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Rapid Entropy Drop, Kauzmann Catastrophe, and an Apparent Mode-Coupling Transition
in Polymers: An Exact Model Calculation on a Husimi Cactus
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We identify the mechanism behind a rapid entropy drop in the metastable (ML) polymer liquid and
clarify the significance of the Kauzmann paradox. We also establish a thermodynamic basis for an
apparent critical mode-coupling transition between supercooled (SCL) and ML polymer liquids, and for
the ideal glass transition but only in ML. The latter need not ever form an equilibrium phase. The
crystal can have higher entropy than ML or SCL polymer liquids.
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The glass transition in fragile supercooled (SCL) liq-
uids is believed to be a manifestation of a rapid drop in
the configurational entropy near the Kauzmann tempera-
ture TK, and has been a topic of continuous interest for
over five decades [1–5]. According to the still unresolved
paradox posed by Kauzmann [1], the “extrapolated” en-
tropy SSCL�T� of the supercooled liquid becomes less than
the entropy SCR�T� of the crystal (CR) at low enough
temperatures below the glass transition temperature TG.
Most scientists believe [2,4] that SSCL�T� $ SCR�T� be-
low the melting temperature TM, even though there is no
such thermodynamic requirement. Accordingly, it is con-
jectured that the system averts the Kauzmann catastrophe
by either spontaneous crystallization [1], which we do not
consider here, or by an ideal glass transition [2–4]. The
latter had been justified only for polymers [3(a)] in an ap-
proximation, which was proven unreliable due to the exact
entropy bounds obtained by Gujrati and Goldstein (G-G)
[5]. Whether there is a thermodynamic basis [2–4] for
the glass transition remains one of the most challenging
and still unsolved theoretical problems [4], though major
progress has been made recently [6–8].

Recent activities [6–8] in which the crystal is explic-
itly suppressed are primarily based on dynamical pictures
either directly related to supercooled liquids or borrowed
from spin glasses where the unphysical replica trick is ex-
tensively used. In addition, it has also become clear re-
cently that there is a “critical” temperature TMC, at which
the correlation time diverges as can be seen in the mode-
coupling (MC) theory [9]. Therefore, a critical behavior
underlying the dynamic slowing down is a tantalizing pos-
sibility. Despite the sudden surge of interest, there is still
no comprehensive understanding of (i) the nature of the
SCL which eventually vitrifies and its relationship with
CR, (ii) the mechanism responsible for the rapid entropy
loss near TG, (iii) the nature of the ideal glass transition,
and (iv) a possible thermodynamic basis for the critical
(and apparently a mode-coupling) transition in SCL’s.

Results.—Our aim in this Letter is to advocate a thermo-
dynamic justification of and explanations for all the above
phenomena, see Figs. 1 and 2, in a system of infinitely
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long polymer. The system exhibits a first-order melting
transition, see ��� in Fig. 1 (inset), at TM between a
high-temperature equilibrium liquid (EL) phase, and an
equilibrium CR; the latter has nonzero entropy in accor-
dance with the G-G bounds [5]. The CR free energy FCR0

at T � 0 is the maximum possible free energy in equilib-
rium over all T . There is a metastable liquid (ML) phase
that exists at all temperatures, but has a higher free en-
ergy than EL. The latter can be supercooled to yield SCL,
which meets ML critically (i.e., no latent heat) and termi-
nates at a critical point TMC # TM; see ��� in Figs. 1 (in-
set) and 2. The correlation length diverges as T ! T1

MC in
SCL [C�T� discontinuous] and contributes to critical slow-
ing down [9(b)]. In contrast, C�T� is continuous in ML at
TMC. At some temperature TM0 . 0, the ML free energy
FML�T� crosses FCR0, only to come back to it at T � 0.
Hence, it has a maximum at 0 , TK , TMC, where the en-
tropy SML�TK� vanishes. At Teq . TK, SCR � SML, but
SCR . SML between TK and Teq. The Kauzmann catas-
trophe occurs below TK and not below Teq. Below TK,
ML cannot continue due to negative entropy. The impli-
cation is that all the states along this part of ML do not
exist in a thermodynamic sense; these states correspond to

FIG. 1. F̃�T � � F�T� 2 ´0 for different states and a � 0, 0.5,
and 0.8, and Ẽ�T� � E�T� 2 ´0 (inset) for a � 0.5. ML (con-
tinuous line). CR (dashed line). EL/SCL (dotted, dash-dotted,
and dash-dot-dotted lines), TMC ��, �, ��, and TM ��, �, ��
for a � 0, 0.5, and 0.8, respectively.
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FIG. 2. S�T � (left axis) and C�T � (right axis) for a � 0.5; see
legend in Fig. 1.

lower energies than at TK; see Fig. 1 (inset). At TK, ML
gets trapped in one of the thermodynamically insignificant
many states of energy EK � EML�TK�. Below TK, it can-
not be in states with higher energies, since that would cor-
respond to negative specific heat. It cannot be in lower
energy states, as they do not exist. Spontaneous crystal-
lization [1] is not considered as said earlier. Hence for all
T , TK, ML remains “frozen” in the “ideal” glass state
available at TK. Since the state of the system does not
change at TK, the ideal glass transition is continuous.

Model.—We now proceed to demonstrate these con-
clusions in an explicit exact calculation. We consider the
Hamilton walk (HW) limit of a polymer [5], in which it vis-
its every site of the lattice once. For convenience, we con-
sider a square lattice in lieu of a tetrahedral lattice. There
are two separate interaction energies to sustain liquid-
liquid and melting transitions. It is easy to see that a two-
site interaction does not affect the thermodynamics of HW.
There is a three-site bending penalty ´ . 0 for each of the
two possible gauche (g) bonds at each site of the lattice.
There is no penalty for a trans bond. This interaction pro-
motes crystallization. The second interaction is a four-site
interaction caused by steric effects: energy ´0 . 0 for
each pair of neighboring parallel bonds. Let Ng denote the
number of bends and Np the number of parallel pairs of
neighboring bonds. The energy of interaction is given by

E � ´Ng 1 ´0Np � ´�Ng 1 aNp� , (1)

where a � ´0�´. We introduce w � exp�2´�T� and
w0 � wa for later use. We also replace T�´ by T , so that
the temperature is measured in the units of ´. Volume
change upon melting, which has been shown to be impor-
tant [10], will be considered in a separate publication.

There are four local conformation of HW at each site.
Each site is shared by two squares S and S0; S is marked
by a filled dot close to the site, as shown in Fig. 3. Con-
sider some S, and the site near the filled dot. From inside
S, we look across this site into the opposite square S0

to define the four conformations. They are L, R, and O
corresponding to a left turn, a right turn, and an outside
turn in S0, respectively, and an internal turn I within S. For
a , 1, the ground state of the HW at T � 0 is, see 1 and 2
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FIG. 3. The states of a site and possible ground states. The
dots �≤� show the corner of S, with S0 across it. We show the
sequence of dots for configurations 1 and 4 of the walk.

in Fig. 3, the one in which all bonds are parallel �Np � N �
with no bends �Ng � 0�, and FCR0 � ´0. Because of this,
we find F̃ � F 2 ´0 to be more convenient to use, since
F̃CR0 � 0 for all ´0. In the ground state, L and R alternate;
their respective density l and r equal 1

2 . For a . 1, the
ground state is a steplike walk, see 3 and 4 in Fig. 3, with
the maximum number of bends �Ng � N �, but no neigh-
boring parallel bonds �Np � 0�. This state is described by
a sequence RIRIRI . . ., or LILILI . . ., and does not corre-
spond to a crystal. Therefore, we consider only the case
a , 1.

The problem is solved exactly on a Husimi cactus, which
is a fixed structure; see Fig. 1 in Ref. [11(a)], where it is
shown that such calculations are more reliable than conven-
tional mean-field calculations and satisfy thermodynamics.
The exact solution becomes an approximate theory on a
square lattice. The cactus is an infinitely large tree, ob-
tained by joining two squares at each corner recursively.
It is divided into generations, with the generation number
m at each site increasing progressively as we move away
from the origin m � 0 of the cactus. We follow Ref. [11]
closely and introduce, as is the standard practice, partial
partition functions Zm�a� at the mth generation site, given
that the state of the walk at the site is a � L, R, I, O;
Zm�a� are the contributions of the part of the cactus above
this level. We recursively express Xa � Zm�a� in terms
of Ya � Zm11�a�:

XI � w�YI 1 2ww0YO�YLYR ,

XO � Y3
I 1 �2YI 1 wYO�YLYR ,

XL � �wYL 1 YR�
(2)

3 �Y2
I 1 wYIYO 1 w0YLYR 1 w2w0Y2

O� ,

and XR is given by L $ R interchange in the equa-
tion for XL. We introduce the three ratios xm�a� �
Zm�a���Zm�L� 1 Zm�R�� for a � L, I, and O, and
xm�R� � 1 2 xm�L�. On an infinite cactus, xm�a� near
the origin approaches its fix-point (FP) solution whose
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nature determines the bulk behavior of the model. We
consider two different schemes for the FP. The complete
analysis will be presented elsewhere [12]. Here, we will
content ourselves with the final results, as the technique
is standard.

1. 1-Cycle FP scheme: Here, xm�a� ! xa near the
origin. We set xa � l, i, and o, for a � L, I and O, and
xR � r � 1 2 l. We always have l �

1
2 � r. For i and

o, we have

i � w�i 1 2ww0o�lr�QLR ,

o � �i3 1 �2i 1 wo�lr��QLR ,
(3)

where QLR � �1 1 w� �i2 1 w0lr 1 wio 1 w2w0o2�.
The solution i � o � 0 exists for all T and repre-
sents ML: F̃ML�T� � 2T ln��1 1 w�2�2�. The energy
ẼML�T� � 2w��1 1 w� increases monotonically with T ,
see Fig. 1, and resembles the excitation profiles for the
mixed Lennard-Jones system [13(a)] and the two-state
model [13(b)]. The specific heat CML is maximum at
Tmax � 0.42 , TK � 0.48, see Fig. 2. For T . TMC,
there is another solution EL with i fi 0, o fi 0, see Fig. 1,
which merges with ML critically at an a-dependent TMC

(�, �, � as a increases), where both phases become
identical. In ML, L and R are distributed statistically.
In EL, I and O are also statistically distributed, and EL
has more energy and disorder than ML; see the inset in
Fig. 1. As T ! T1

MC, o and i continuously vanish in
EL; S remains continuous but C has a discontinuity,
giving rise to critically and to critical slowing down
[9] in the EL $ ML transition. In contrast, CML�T�
remains continuous at TMC, which can make the dominant
dynamics in ML and EL very different. In particular,
if EL is suppressed and we superheat ML, the observed
dynamics should be very different. This is precisely
what is observed, see Fig. 2 in Ref. [7(b)], where the
fast dynamics (of EL) is suppressed in the model. No
critical slowing down is apparent as T is raised above
TMC. Kisliuk and co-workers [13(c)] also observe critical
dynamics only above and not below TMC, which is
consistent with our scenario. Thus, there appears to be a
very close parallel between the EL $ ML transition here
and the MC transition. Being a thermodynamic transition,
the specific heat C has a jump at TMC for the EL-ML
transition, but is smooth if ML is superheated across TMC.
A (first-order) liquid-liquid transition has been seen in
Si [13(b)] and supercooled water above certain critical
pressure [13(d)].

2. 2-Cycle FP scheme: At T � 0, CR contains an al-
ternating but ordered sequence of L and R, in addition to
having l � 1

2 , but no I and O. This is a 2-cycle pattern
in L and R. Thus, higher cycle patterns do not have to be
considered. For ML, l �

1
2 also, but L and R are statis-

tically distributed. One of these distributions must be the
crystal state at T � 0; indeed, FML�T � 0� � FCR0. De-
spite this, ML immediately above T � 0 cannot represent
025701-3
CR, as it has negative entropy. To obtain the alternating se-
quence in CR at T . 0, the above 1-cycle FP scheme must
be modified. To this end, we observe that for T . 0, there
must be local Gujrati-Goldstein excitations [5,10] creating
imperfections by local L $ R interchanges in the ordered
�. . . LRLRLR . . .� sequence. The excitations change a lo-
cal string LRL into LLL, or RLR into RRR within a square
and require four bends only. [Other excitations, which re-
quire (L or R)$(I or O) on the cactus, cannot be done
locally and require an infinite amount of energy, and need
not be considered.] This means that the local density l or
r will no longer be 1

2 . However, if l .
1
2 at some site,

then r .
1
2 at the next site, followed by l .

1
2 on the next

site and so on. Thus, we look for a scheme that imposes
a sublattice structure of two different kinds A and B on
the lattice. Set xm�L� � lA, xm21�L� � lB, followed by
xm22�L� � lA, xm23�L� � lB, and so on. We find that

lA � �r2
BlA 1 wl2

BrA���2�1 1 w� �r2
BlA 1 l2

BrA�� , (4)

with lB given by A $ B interchange; note the a inde-
pendence. For all T , lA � lB � l �

1
2 is a solution and

corresponds to ML. Below TCRE � ln2 (�, Fig. 1), two
new solutions, equal in energy, bifurcate continuously out
of ML, such that if lA .

1
2 , then lB ,

1
2 , or vice versa.

This is a 2-cycle FP solution for CR at T . 0 with a sub-
lattice structure and is stable. At T � 0, lA � 1, lB � 0,
or vice versa. All three solutions have the same ground
state energy.

The free energy F̃CR�T � � 2T ln��1 2 w2�2��1 2
2w2�� of CR is shown in Fig. 1 and CR coexists with
EL at a first-order melting temperature TM (�, � as a
increases) for a . 0. Both TM and TMC depend on a, but
TK, Teq, and TM0 do not.

Ground state.—We now make an important observation
for T � 0. If the correct ground state on the original (here
square) lattice is also realizable on the special lattice on
which the problem is solved exactly (here Husimi cactus),
then the ground state energy, which is also the free energy,
on the special lattice must be exactly equal to that on the
original lattice.

The calculation for CR and ML is done exactly on the
cactus in different schemes. Both contain the ground state.
Hence, the T � 0 free energies in both phases are equal.
For CR, FCR�0� is the maximum. For T , TM0, FML be-
comes larger than FCR0 because it rises faster than FCR
as T is reduced, and its maximum at TK is a mathematical
necessity since FML�0� � FCR0. Thus, the sudden drop in
the entropy SML near the maximum is also a necessity. We
conclude, therefore, that a Kauzmann temperature must ex-
ist in a “metastable” state provided it goes into the ground
state at absolute zero. This is a sufficient but not a nec-
essary condition. Near TK, SML must vanish linearly, see
Fig. 2 for a � 0.5; this is also found experimentally. The
specific heat C has an upward discontinuity from zero at
TK, with CML decreasing with T . This behavior is also
observed by Parisi and co-workers [7(c),(d)]. Also, near
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TK, SCR . SML. This is not a paradox. (For a � 0.8,
even the SCL phase has a corresponding Kauzmann tem-
perature, where its free energy is a maximum, see Fig. 1,
and SCR . SSCL near this temperature.)

The possibility of many metastable “states” seen experi-
mentally is due to kinetics. We believe that these states are
a manifestation of the above phase ML, though this cannot
be demonstrated in our equilibrium calculation. It is cer-
tainly possible to construct metastable states, which do not
contain the ground state. Such states cannot be unique. It
is hard to believe that all such states will necessarily give
rise to a Kauzmann temperature. However, our calculation
also does not throw any light on this issue, as both schemes
give unique states at T � 0. We must also emphasize the
mean-field nature of our calculation in which negative en-
tropy can occur in states that are not true equilibrium states.
This will never happen in simulations, but they also can-
not probe the ideal glass and the MC transitions because
of dynamics slowing down. Thus, our calculation serves a
very useful and important purpose in clarifying the subtle
equilibrium aspects of SCL’s and the glass transition and
supplement simulations.

Our final comment is for the case a # 0. For a � 0,
our model reduces to the Flory model of polymer melting
[10,14], which forms the basis for the Gibbs-Di Marzio
conjecture [3(a),5]. For a , 1, F̃ML and F̃CR are a
independent and always meet critically at TCRE, but F̃EL
moves towards lower T with a and slides critically
along F̃ML and crosses F̃CR so that TMC � 0.768 ��� and
0.419 ��� and TM � 1.198 ��� and 1.009 ��� for a � 0.5
and 0.8, respectively. At a � 0, TM � TMC � TCRE ���,
and the “melting” transition becomes continuous [10],
in contradiction with the Flory calculation [14] and the
Gibbs-Di Marzio analysis [3(a)]. There is no SCL. As a
is reduced below zero, TMC�a� moves to higher T . This
makes ML an equilibrium phase between TM � TCRE and
TMC�a� and can be supercooled; despite this, the melting
transition at TM is continuous. This makes the melting in
the Flory model a tricritical point. This is unexpected, as
this possibility has not been considered [5,10]. Continuous
melting cannot be identified with first-order melting in
real polymers. Thus, 0 , a , 0.8 seems an appropriate
range in real system. Let us consider polyethylene, for
which the melting temperature is 400 K. Let us take
a � 0.5, for which TM�TK � 1.198�0.48. Thus, the
Kauzmann temperature for polyethylene is 160 K, which
is 40 K below the usual glass transition around 200 K.
Thus, our theory makes reasonable predictions.

We now summarize our results. We propose a model
of semiflexible infinitely large polymer (HW), which is
solved exactly on a Husimi cactus. The model captures
the important physics of the problem and demonstrates the
thermodynamic basis for an apparent mode-coupling criti-
cal transition at TMC between a supercooled liquid and a
metastable liquid. The metastable liquid never forms an
equilibrium state �a $ 0� and cannot be thought of as an
“extension” of any equilibrium state, contrary to the su-
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percooled liquid, which is an extension of the equilibrium
state EL at T . TM. Our calculation shows for the first
time the thermodynamic significance of the MC transition.
The ideal glass transition occurs in the metastable liquid
and not in the supercooled liquid contrary to the common
belief [4]. It is a surprising result. We provide a thermo-
dynamic justification for the rapid drop in the entropy near
TK by arguing for the importance of including the ground
state in calculating the metastable free energy. We further
argue that the ideal glass transition at TK is driven by the
vanishing of SML and not by its equality with SCR. We
further argue that the metastable liquid is the ideal glass
at TK, and the ideal glass transition is continuous. It is
possible for SCR to be larger than SML and SSCL. We are
currently investigating the effects of compressibility and
finite chain size.

Fruitful discussion with Alexei Sokolov is gratefully
acknowledged.
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