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Random-matrix ensembles serve as models for quantum chaotic systems. We develop the theory of
skew-orthogonal polynomials to study matrix ensembles with non-Gaussian weight functions. From the
asymptotic properties of these and the orthogonal polynomials, we show that the local energy level
correlations in the ensembles become universal properties independent of the global level density. This
provides a rigorous justification for the universality of the Gaussian ensemble results observed in quantum
chaotic systems.
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Gaussian ensembles of random matrices have been stud-
ied extensively as models for quantum chaotic systems.
The three invariant Gaussian ensembles — GOE, GUE, and
GSE, having invariances under orthogonal, unitary, and
symplectic transformations, respectively —describe accu-
rately the three universal patterns of energy-level correla-
tions observed in quantum chaotic systems [1–6]. Spectra
of complex nuclei, atoms, molecules, disordered meso-
scopic systems, and microwave cavities provide experi-
mental verification of the universality [1–3]. Numerical
and semiclassical studies of quantum chaotic systems with
few degrees of freedom as well as studies of zeros of the
Riemann zeta function confirm the same [1–3]. How-
ever, except for their analytical tractability, there is no
compelling physical reason to study only the Gaussian en-
sembles. In fact, the level density does not correspond
to any known physical system; the universal behavior is
for the local energy level statistics after suitable rescaling
of the spectrum by the average spacing. It is therefore
of interest [7] to study invariant matrix ensembles with
non-Gaussian weight functions which would give very dif-
ferent level densities. The new ensembles have the physi-
cally relevant property [4] that the distinct matrix elements
are not independent. Such ensembles are particularly use-
ful in quantum transport studies of disordered mesoscopic
systems [2,6].

In this Letter we study a wide class of non-Gaussian
random-matrix ensembles with the aim to prove a conjec-
ture of Dyson [7] that “the local statistical properties of the
eigenvalues in the ensembles become universal properties
independent of the global eigenvalue distributions” in the
limit of large dimensionality. With this, the universality
found in physical systems will have a firm justification.
Proof of this would require a study of skew-orthogonal
polynomials for the ensembles with orthogonal and sym-
plectic invariances. Unlike the orthogonal polynomials
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(needed for the unitary case), the skew-orthogonal poly-
nomials are defined with respect to antisymmetric scalar
products and hence are much more difficult to deal with.
Except for the formalism laid down by Dyson [7] and
some initial results of Mehta [8], very little is known about
them. Our second aim in this study is [7] “to develop the
theory of skew-orthogonal polynomials until it becomes a
working tool as handy as the existing theory of orthogonal
polynomials.”

The universal eigenvalue statistics, while independent
of the weight function and location in the spectrum, will
depend on the type of the invariance. Independence from
the weight function was first proved by Fox and Kahn
[9] for the Jacobi class of weight functions in the unitary
case, while independence from the location in the spectrum
(“stationarity”) was proved by one of the present authors
[10] for all three Gaussian ensembles. In this Letter we
prove the universality rigorously for the entire class of
Jacobi weights for all three types of invariant ensembles.
For more general weight functions we do the same in the
later part of the Letter via an ansatz for the asymptotic
forms of the polynomials.

We consider matrix ensembles in which the joint-
probability density of eigenvalues is given by

Pb,N �x1, . . . , xN � � cb,N

Y
j,k

jxj 2 xk j
b

NY
i�1

w�xi� , (1)

where N is the dimensionality of the matrices, c is the nor-
malization constant, w�x� is the weight function referred
to above [w�x� � exp�2x2�2� in the Gaussian case] and
the xj are the eigenvalues. The parameter b with val-
ues 1, 2, 4 describes, respectively, the orthogonal, unitary,
and symplectic cases. (The corresponding matrix proba-
bility density is proportional to exp�tr logw�H��, where
the matrix H is real, complex, or quaternion-real Hermi-
tian for b � 1, 2, 4, respectively.) The n-level correlation
function,
R�b�
n �x1, . . . , xn� �

N!
�N 2 n�!

Z
dxn11 . . .

Z
dxN Pb,N�x1, . . . ,xN � , (2)
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is the probability density of observing n levels at x1, . . . , xn
irrespective of the location of the other levels. Thus R1�x�,
which is normalized to N , is the level density. The local
correlation functions,

R�b�
n �r1, . . . , rn; x� � lim

N!`

R
�b�
n �x1, . . . , xn�

R
�b�
1 �x1�, . . . ,R

�b�
1 �xn�

, (3)

describe, for large N , the level statistics in the neighbor-
hood of x. Here, in (3), xj � x 1 rj�R1�x��21 are ex-
pressed in terms of the locally rescaled eigenvalues rj .

Dyson [7] has shown that, for finite N , the Rn can be
expressed in terms of the kernel function S

�b�
N �x, y� of or-

thogonal or skew-orthogonal polynomials. For b � 2, the
kernel is written in terms of the orthogonal polynomials
pj�x�:

S
�2�
N �x, y� � w�x�

N21X
j�0

pj�x�pj� y� , (4)

where the pj�x� satisfy the orthonormality relation,Z
pj�x�pk�x�w�x� dx � djk . (5)
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Similarly for b � 1 (N � even), the kernel analogous to
(4) is written in terms of skew-orthogonal polynomials
qj�x�:

S
�1�
N �x, y� �

Z
dz e� y 2 z�w�x�w�z�

3

N�2X
m�0

�q2m�x�q2m11�z� 2 q2m11�x�q2m�z�� ,

(6)

where the qj�x� satisfy the skew-orthonormality relation,ZZ
dx dy e�x 2 y�w�x�w�y�qj �x�qk� y� � Zjk . (7)

Here 2e�x� is the sign of x, and Zjk � 2Zkj has the value
1 for k � j 1 1 with j even, the value 21 for k � j 2 1
with j odd, and zero for j j 2 kj fi 1. [Equations (6) and
(7) can be written in simpler forms in terms of the inte-
grated function cj�x� defined in (22) below.] The odd-N
case of b � 1 can be handled similarly. For b � 4, we
have in terms of the skew-orthogonal polynomials tj�x�:
S
�4�
N �x, y� �

≠

≠y

(
�w�x�w� y��1�2

NX
m�0

�t2m�x�t2m11�y� 2 t2m11�x�t2m� y��

)
. (8)
Here the tj�x� satisfy a different skew-orthonormality
relation, viz.,Z

dx w�x� �tj �x�t0k�x� 2 tk�x�t0j�x�� � Zjk , (9)

which follows Mehta’s definition [8], rather than the
original definition of Dyson [7]. The qj�x� and tj�x�, like
pj�x�, are polynomials of order j. The odd-order skew-
orthogonal polynomials are not uniquely defined, as any
multiple of the next lower even-order skew-orthogonal
polynomial can be added to it.

With the above definitions, the level density is given by

R
�b�
1 �x� � S

�b�
N �x, x� , (10)

while for Rn we need to consider the limit
S�b��r; x� � lim
N!`

S
�b�
N �x,x 1 Dx�

S
�b�
N �x, x�

, (11)

where r � DxR1�x�. The detailed expressions for the Rn
and Rn can be found in [1,7,8]. Our aim is to prove that

S�b��r; x� �
sin�apr�

apr
, a � 1 1 db4 , (12)

independent of the weight w�x� and location x; with this
the three types of Rn will become universal, identical with
the Gaussian results.

We first consider the Jacobi weight function

wab � �1 2 x�a�1 1 x�b , jxj , 1 , (13)

with a,b . 21. In this case, we have for b � 2
pj�x� � �ha,b
j �21�2P

a,b
j �x� , (14)

h
a,b
j �

2a1b11

�2j 1 a 1 b 1 1�
G� j 1 a 1 1�G� j 1 b 1 1�
G� j 1 1�G� j 1 a 1 b 1 1�

, (15)

where the P
a,b
j �x� are the Jacobi orthogonal polynomials and the h

a,b
j are the corresponding normalizations [11]. The

skew-orthogonal polynomials of the b � 1 type can be written compactly in terms of the Jacobi polynomials:

q2m�x� � �h2a11,2b11
2m �21�2P

2a11,2b11
2m �x� , (16)

q2m11�x� � �h2a11,2b11
2m �21�2�wab�x��21 d

dx
�wa11,b11�x�P2a11,2b11

2m �x�� , (17)
where, after the differential, q2m11 turns out to be a
linear combination of P

2a11,2b11
2m11 and P

2a11,2b11
2m21 . For

b � 4, the derivatives of the polynomials have compact
forms:
t02m11�x� � �g2m�21�2P
a,b
2m �x� , (18)

t02m�x� � �g2m�21�2P
a,b
2m21�x� 1 h2mt

0
m22�x� . (19)
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To obtain tj�x�, note that integral of P
a,b
j can be written as a linear combination of P

a,b
j11, P

a,b
j , P

a,b
j21. The constants h2m

and g2m are given by

h2m � �g2m22�g2m�1�2 �2m 1 a 2 1� �2m 1 b 2 1� �4m 1 a 1 b 2 5�
�2m 2 1� �2m 1 a 1 b 2 1� �4m 1 a 1 b 2 1�

, (20)

g2m � 2ha,b
2m ��4m 1 a 1 b 2 1� . (21)

To prove (16) and (17), we use an expansion of the integrated form:

cj�x� �
Z

e�x 2 y�wab � y�qj� y�dy � djwa11,b11�x�P2a11,2b11
j21 �x� 1

j21X
k�0

g
� j�
k ck�x� , (22)
which, on differentiation, gives a general expansion for
qj�x�. Note that the polynomials P2a11,2b11 are orthogo-
nal with respect to the weightw2a11,2b11 � wa11,b11wa,b.
The skew orthogonality with lower-order polynomials

gives g
� j�
k � 0 for all k except k � j 2 2; g

� j�
j22 can be

chosen to be zero for odd j, while for even j, the nonzero
g

� j�
j22 and the constant dj are determined from skew

orthonormality with qj21 and qj11. Now differentiation
of (22) gives (17) immediately while (16) follows after
cancellation of the lower-order polynomials. A similar
proof can be worked out in the b � 4 case. Detailed
proofs, along with the results for b � 1 (N � odd), will
be given elsewhere [12]. We also mention that, under
suitable limits, the above results can be extended to the
associated Laguerre w�L�

a �x� and the Hermite or Gaussian
024102-3
wG�x� weights:

w�L�
a �x� � xa exp�2x�, a . 21 , (23)

wG�x� � exp�2bx2�2� . (24)

The special cases a � b � 0 for wab (Legendre) and a �
0 forw�L�

a (Laguerre) were considered earlier by Mehta [8].
Moreover, the Gaussian results agree with those of [1,8].

Asymptotic forms (i.e., large-j forms) of the Jacobi
polynomials P

a,b
j �x� are given in [11] for finite a,b as well

as the above mentioned two limiting cases. In terms of
these, the asymptotic forms for pj�x�, qj�x�, tj �x� can be
derived. We write them below in a form suitable for later
generalization. We have
�w�x��1�2pj�x� � Aj

µ
2≠r

�2�
j �x�
≠j

∂1�2

cos

µ
p

Z x

2`
r

�2�
j �x 0�dx0 1 x�x�

∂
, (25)

w�x�q2m�x� � pBm�x�r�1�
2m�x� cos

µ
p

Z x

2`

r
�1�
2m�x0�dx0 1 j�x�

∂
, (26)

w�x�q2m11�x� � 2�Bm�x��21
µ

2≠r
�1�
2m�x�

≠�2m�

∂
sin

µ
p

Z x

2`
r

�1�
2m�x0�dx0 1 j�x�

∂
, (27)

�w�x��1�2t2m�x� � Cm�x� cos

µ
2p

Z x

2`
r�4�
m �x0� dx0 1 z �x�

∂
, (28)

�w�x��1�2t2m11�x� � �2pCm�x�r�4�
m �x��21

µ
≠r

�4�
m �x�

≠�m�

∂
sin

µ
2p

Z x

2`
r�4�
m �x0�dx0 1 z �x�

∂
. (29)
Here r
�b�
j �x� [2r�b�

m �x� for b � 4 with j � 2m] is the den-
sity of zeros of the polynomials, the normalization being
j. [t2m in (28) has additional terms giving thereby com-
plex zeros with small imaginary parts; 2r�4�

m is then den-
sity of the real parts.] x�x�, j�x�, and z �x� are j- and
m-independent phases, while Aj , Bm, and Cm are extra
factors needed in the amplitudes with jAjj � 1. For the

weights mentioned above r
�2�
j and x can be read off from

the asymptotic forms given in [11], and then the other
quantities can be derived from the above finite-m results
for the polynomials. It turns out that A, B, C, x, j, and z

are not needed in the evaluation of the limit in (11). The
density function rj�x� can be written as

r
�b�
j �x� � jp21�1 2 x2�21�2, jxj # 1 , (30)

r
�b�
j �x� � �bp�21x21�2�2bj 2 x�1�2, 0 # x # 2bj ,

(31)
r
�b�
j � p21�2j 2 x2�1�2, jxj # �2j�1�2, (32)

respectively, for Jacobi (finite a,b), associated Laguerre,
and Hermite cases. To evaluate S

�b�
N �x, y� for large N , we

use the asymptotic forms of the polynomials in (4), (6),
and (8) and replace the summation by an integral. We find
from (10) that the level density R1 approaches the density
of zeros rN for large N :

R
�b�
1 �x� � r

�b�
N �x� , (33)

while (11) yields

S�b��r; x� � lim
N!`

µ
sin�apDxR

�b�
1 �x��

apDxR
�b�
1 �x�

∂
, (34)

giving thereby (12) in the limit. We have thus proved the
universality for the entire Jacobi class of weight functions.
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We now propose the ansatz that the asymptotic forms
(25)–(29), proved rigorously above for the Jacobi class of
weights, are valid quite generally. To make the ansatz plau-
sible, we first write (exact) matrix-integral representations
of the unnormalized polynomials:

pj�x� �

*
jY

m�1
�x 2 xm�

+
2,j

, (35)

q2m�x� �

*
2mY

m�1

�x 2 xm�

+
1,2m

, (36)

q2m11�x� �

*√
x 1

2mX
m�1

xm

!
2mY

n�1

�x 2 xn�

+
1,2m

, (37)

t2m�x� �

*
mY

m�1

�x 2 xm�2

+
4,m

, (38)

t2m11�x� �

*√
x 1 2

2mX
m�1

xm

!
mY

n�1

�x 2 xn �2

+
4,m

, (39)

where �F�x1, . . . , xN ��b,N is the average of F with respect
to the joint-probability density Pb,N of (1). The b � 2
result (35) is due to Eynard [13]; proof of the skew-
orthogonal forms (36)–(39) can be worked out similarly
[12,14]. Now, ignoring the correlations in the xm, we
see from (35)–(39) that, asymptotically, the zeros of the
polynomials have the same density as that of �xm�, giving
thereby the relation (33). By considering the spacing be-
tween the consecutive zeros, we can verify that the phases
in (25)–(29) are all consistent with the definition of rj .
Using (5), (7), (9), and (10), one can establish the form of
the amplitudes. Thus the ansatz gives (34) and hence the
universal result (12) for general weights.

We mention finally that R1�x�, and hence r�x� in
(25)–(29), can be derived independently. For this we note
first that (1) and (2) give

≠R
�b�
1 �x�
≠x

� b
Z R

�b�
2 �x, y�
x 2 y

dy 1
w0�x�
w�x�

R
�b�
1 �x� , (40)

which, for large N , becomes [7,15–17]

bR
�b�
1 �x�

Z R
�b�
1 � y�
x 2 y

dy 1
w0�x�
w�x�

R
�b�
1 �x� � 0 , (41)

where the principal value of the integral is used. Using the
resolvent [18],

G�z� �
Z R1�y�

z 2 y
dy , (42)

one can solve (41) for many weight functions. For ex-
ample, with careful consideration of the singularities in
w0�x��w�x�, we find (30)–(32) for the Jacobi class of
weights. This, then, gives the essential parts of the asymp-
totic forms (25)–(29) more explicitly. Applying this to
w�x� � exp�2NV �x��, where V�x� is a low-order polyno-
mial, we get, from (25), the Brezin and Zee [19] ansatz;
(26)–(29) may then be considered as the skew-orthogonal
extensions of the Brezin and Zee ansatz.
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We have thus established the universality and station-
arity of local statistical properties of energy levels rigor-
ously for the Jacobi class of weight functions and via an
ansatz for more general weight functions. The matrix-
integral representations of the polynomials —orthogonal
as well as skew-orthogonal ones — appear to be promis-
ing for rigorous studies with general weight functions. We
have also given a formalism for deriving the (nonuniver-
sal) level density without using the polynomial method.

The concept of skew orthogonality may turn out to be
useful for other random-matrix systems and in other con-
texts. It seems [15] that the local correlation functions have
universal properties also for the Brownian-motion ma-
trix ensembles [7], viz., ensembles interpolating between
the invariant ones. These ensembles are useful in the stud-
ies of small symmetry breaking in quantum chaotic sys-
tems [16]. In the GOE-GUE [20] and GSE-GUE [21]
interpolations, the concept of skew orthogonality has been
implicitly used. It remains to be seen whether the skew-
orthogonal polynomials will play any role in the more gen-
eral Brownian-motion ensembles. From the asymptotic
forms it also seems tempting to look for new methods of
semiclassical quantization [22] of chaotic systems using
skew-orthogonal functions as tools.
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