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Soft-Pion Theorem for Hard Near-Threshold Pion Production
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We prove a new soft-pion theorem for the near-threshold pion production by a hard electromagnetic
probe. This theorem relates various near-threshold pion-production amplitudes to the nucleon distribution
amplitudes. The new soft-pion theorem is in good agreement with the SLAC data for the structure
function F

p
2 �W , Q2� for W 2 # 1.4 GeV2 and 9 # Q2 # 30.7 GeV2.
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The amplitudes of the pion production near the threshold
by the electromagnetic probe

g� 1 N ! p 1 N 0 (1)

at a not too large virtuality �Q2� of the photon Q2 ø

L3�mp (L � 1 GeV is a typical hadronic scale) can be
expressed in terms of various nucleon form factors with
the help of the soft-pion theorem (SPT) [1–3]. For virtu-
alities Q2 � L3�mp and larger this SPT does not work,
because the SPT of [1–3] corresponds to first taking the
chiral limit �mp ! 0� while Q2 is kept fixed. To study the
parametric domain mpQ2 ¿ L3 we consider the opposite
sequence of the limits: Q2 ! ` first and mp ! 0 second.
Since the two limits do not commute, in this way we derive
a new “hard-soft” pion theorem (hSPT) for the reaction (1)
in the near-threshold region and in the Q2 kinematics com-
plementary to one of Refs. [1–3], namely, mpQ2 ¿ L3.
Our main tool is the QCD factorization theorem for exclu-
sive processes [4,5] (for a recent review and comprehen-
sive list of references, see, e.g., [6]). It allows us to express
the pion-production amplitude at large virtuality in terms
of the distribution amplitudes (DAs) of the nucleon and of
the low-mass pN system. These nonperturbative objects
correspond to the minimal three quark �3q� Fock compo-
nent of the nucleon and pN systems [7]. We derive a
hSPT to relate the corresponding distribution amplitude of
the pN system (we call it pN DA) to the nucleon distri-
bution amplitude. This hSPT is valid for the limit when
the mass of the pN system (denoted as W) is close to the
threshold Wth � MN 1 mp . The derivation of the similar
theorem for DA of the two-pion system near threshold can
be found in [8,9].
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The physical picture of the near-threshold production of
pion by a hard electromagnetic probe is as follows. At
large Q2 the emission of the soft pion from the initial
state contributes only to large invariant masses W . The
emission from the hard interaction part is a higher twist
in Q2. Hence the emission occurs solely in the final state
when a small 3q system produced in the hard interaction
expands to a large enough configuration. At this point
we are dealing with a soft-pion emission and can apply
corresponding near-threshold chiral theory relations.

It follows from the QCD factorization theorem [4,5]
that the transition matrix element A�g�N ! pN 0� at
large Q2 can be written as (up to the power suppressed
terms)

A�g�N ! pN 0� �
Z

dx dy F�
pN 0�x�T�x,y�FN � y� ,

(2)

where T �x, y� is the hard part of the process computable
in perturbative QCD. The functions FN � y�, FpN 0�x� are
distribution amplitudes (light cone wave functions) of the
nucleon and of the low-mass pN 0 system. The DA of the
nucleon FN � y� also enters the QCD description of the nu-
cleon form factor and it is the subject of intensive studies.
The distribution amplitude of the pN system is a straight-
forward generalization of the baryon DAs. Many gen-
eral properties of these objects are similar to those of the
two-pion distribution amplitude which were extensively
studied in Ref. [9]. They will be discussed elsewhere.

We focus here on the soft-pion theorem for pN DAs.
Using the general soft-pion theorem (see, e.g., [10]) we
can write
�pa�k�Nf �p, S� jOj0� �
i

fp

�Nf�p, S�j �Qa
5 , O� j0� 1

igA

4fp �p ? k�

X
S 0,f 0

u�p, S�k�g5ta
ff 0u�p, S0� �Nf 0 �p, S0� jOj0� . (3)
Here fp � 93 MeV is the pion decay constant and gA 	
1.25 is the axial charge of the nucleon. The operator O is
the trilocal quark operator of twist-3 in which quark fields
are separated by a light cone distance, in the complete
analogy with the definition of the baryon DA; see, e.g.,
[11]. The operator Qa

5 is the operator of axial charge, so
that the calculation of the commutator �Qa
5 , O� reduces to

the chiral rotation of operator O. The second term on the
right-hand side (rhs) of Eq. (3) corresponds to the chiral
singularity due to the nucleon pole in the graph shown
in Fig. 1. The contribution of this diagram is strongly
© 2001 The American Physical Society 022001-1



VOLUME 87, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 9 JULY 2001
3

2

1
x

N

π

x

x

FIG. 1. Nucleon pole contribution to the soft-pion theorem for
generalized pN distribution amplitudes.

suppressed for W 2 Wth ø mp , but for W 2 Wth � mp

it becomes significant; see Eqs. (18) and (19).
Let us start from the calculation of the first (commutator)

term in Eq. (3). Since the chiral rotation of the trilocal
quark operator O does not change its twist Eq. (3) allows
us to express generalized pN DAs at the threshold in terms
of nucleon DAs.

We write the nucleon DA in terms of functions fS�x�
and fA�x� which are symmetric and antisymmetric, re-
spectively, under x1 $ x3 (1 and 3 are quarks with parallel
helicities) [4,12]. For the proton we have

jp "� �
fS�x�
p

6
j2u"d#u" 2 u"u#d" 2 d"u#u"�

1
fA�x�
p

2
ju"u#d" 2 d"u#u"� . (4)

The distribution amplitude for neutron can be obtained
from the above expression by the replacement u $ d.

Applying the general soft-pion theorem (3) we express
the distribution amplitudes of various pN systems at
the threshold in terms of the nucleon DAs fS�x� and
fA�x�:

jp " p0� �
fS�x�

2
p

6 fp

j6u"d#u" 1 u"u#d" 1 d"u#u"�

2
fA�x�

2
p

2 fp

ju"u#d" 2 d"u#u"� , (5)

jn " p1� �
fS�x�
p

12 fp

j2u"d#u" 2 3u"u#d" 2 3d"u#u"�

2
fA�x�
2fp

ju"u#d" 2 d"u#u"� . (6)

The DAs of the neutral pN systems can be obtained by
the trivial replacement u $ d.

Now we can compute the threshold amplitudes
A�g�N ! pN 0� at large Q2 combining the factorization
theorem (2) with the expressions for pN DAs (5),(6).
The technique of calculations of the hard part T�x, y, Q2�
is standard and can be found, e.g., in Refs. [4,11].
We give here only the final results using notations of
Refs. [4,12,13]. Generically for the transitions N ! pN 0

we can write
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Q4A�g�N ! pN 0�jth �
�16pas�2

9fp

Z
�dx dy�

3
X

i,j�S,A

CN!pN 0

ij �x, y�fi�x�

3 fj� y� . (7)

Here �dx� � dx1dx2dx3 d�1 2 x1 2 x2 2 x3� and coef-
ficient functions Cij�x, y� are given in the following table:

N ! pN 0 CSS CSA � CAS CAA

p ! p0p 23
9 T1 2

8
9 T2

1
p

3
T1 2

13
9 �T1 1 2T2�

p ! p1n
p

2
9 �11T1 1 4T2� 2

q
2
3 T1 2

q
2
3 �T1 1 2T2�

n ! p0n 13
9 �T1 2 T2� 1

p
3
T1

1
3 �T1 1 T2�

n ! p2p 2

p
2

9 �T1 2 T2�
q

2
3 T1 2

q
2
3 �T1 2 T2�

with the standard functions [4]

T1 �
1

x3�1 2 x1�2y3�1 2 y1�2 1
1

x2�1 2 x1�2y2�1 2 y1�2

2
1

x2x3�1 2 x3�y2y3�1 2 y1�
, (8)

T2 �
1

x1x3�1 2 x1�y1y3�1 2 y3�
. (9)

Expressions for various nucleon form factors in the same
notations can be found, e.g., in Refs. [4,12,13].

Using Eq. (7) one can express the near-threshold struc-
ture functions F

p,n
2 �W, Q2� and various differential cross

sections for particular pN channels in terms of the nucleon
DAs. The same DAs appear in the QCD factorization theo-
rem for the nucleon form factors at large Q2. We find that
in the case of the symmetric form of the nucleon DA

fS�x� is arbitrary, fA�x� � 0 , (10)

one can describe the near-threshold pion production di-
rectly in terms of the nucleon form factors without speci-
fying the nucleon DA; see below. Certainly the nucleon
DA can have a nonzero asymmetric component fA�x�.
Actually our general Eq. (7) can be applied to any spe-
cific model of the nucleon DA (see, e.g., [14]) to compare
the model predictions with the experiment. In the case of
symmetric nucleon DA the amplitude of the process (1)
can be expressed in terms of nucleon magnetic form fac-
tors �GMN �Q2�� as follows:

A�g�p ! p0p�jth � 2
1

fp

µ
5
6

GMp 2
4
3

GMn

∂
, (11)

A�g�p ! p1n�jth �
1

p
2 fp

µ
5
3

GMp 1
4
3

GMn

∂
,

(12)

A�g�n ! p0n�jth � 2
13GMn

6fp

, (13)

A�g�n ! p2p�jth �
GMn

3
p

2 fp

. (14)
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Since these results are based on the symmetric form (10)
for the nucleon distribution amplitude, deviations from
these equations would allow one to probe directly the
asymmetric part of the nucleon distribution amplitude and
check the validity of the leading twist description of the
nucleon form factors.

The data on the structure function F
p
2 �W ,Q2� in
022001-3
the near-threshold region were obtained in 1994 in the
SLAC experiment E136 [15] for a wide range of Q2 �
7 30.7 GeV2. Here we make the first comparison of the
data with the hSPT predictions.

To compute F
p
2 �W , Q2� for W 2 Wth & mp we

combine the strictly threshold amplitude (7) with
the contribution of the last term from Eq. (3) and
obtain
F
p
2 �W , Q2� �

Q2b�W�
�4p�2

" X
X�pp0,np1

jA�p ! X�jthj2 1
3g2

AG2
Mp�Q2�b2�W�W4

4f2
p �W2 2 M2

N 1 m2
p�2

1 O

µ
mp

L

∂#
, (15)
where

b�W� �

s
1 2

�MN 1 mp�2

W2

s
1 2

�MN 2 mp�2

W2
.

(16)

The first term on the rhs of Eq. (15) corresponds to strictly
threshold amplitude (7). The second term takes into ac-
count the emission of the pion from the outgoing nucleon
(Fig. 1) with the amplitude given by the second term on the
rhs of Eq. (3). The latter contribution vanishes exactly at
the threshold but gives a parametrically unsuppressed con-
tribution for W 2 Wth � mp . Note that the second term
in Eq. (15) corresponds to the pN system in the P wave;
therefore it can be separated from the first (S-wave) term
by considering the angular distributions in pN system.

The data of the E136 experiment [15] are consistent with
the factorized form

F
p
2 �W , Q2� � F�Q2�G�W� , (17)
with F�Q2� ~ 1�Q6 for Q2 $ 8 GeV2 which is exactly
the scaling behavior following from Eq. (15). We also
found that Eq. (15) provides a good description of the W
dependence of the E136 data for W # 1.2 GeV though the
predicted W dependence is somewhat different from the
G�W� ~ W2 2 W2

th fit of [15]. However, the resolution
of E136 is not sufficient to distinguish between the two
forms; see Fig. 2. The hSPT (15) also predicts the scaling
behavior �1�Q6 which is confirmed by the E136 data [15].

Thus we reproduce several features of the data without
using any specific nucleon wave functions. To make a first
quantitative comparison of the soft-pion theorem predic-
tion for the absolute value of F

p
2 we use the symmetric

form for the nucleon distribution amplitude (10). Inserting
the expressions (11) and (12) for the threshold amplitudes
into Eq. (15) and using the analogous expression for the
neutron structure function, we obtain the following hSPT
for the structure functions in the case of the symmetric
form (10) for the nucleon DA
F
p
2 �W , Q2� �

Q2b�W �
�4pfp �2

∑
25
12

G2
Mp�Q2� 1

8
3

G2
Mn�Q2� 1

3g2
AG2

Mp�Q2�b2�W�W4

4�W2 2 M2
N 1 m2

p�2
1 O

µ
mp

L

∂∏
, (18)

Fn
2 �W , Q2� �

Q2b�W�
�4pfp�2

∑
19
4

G2
Mn�Q2� 1

3g2
AG2

Mn�Q2�b2�W �W4

4�W2 2 M2
N 1 m2

p �2
1 O

µ
mp

L

∂∏
. (19)
Now we can compare our results based on the hSPT
with the E136 data [15]. In Fig. 2 we show the E136 data
on the W2 dependence (for W2 # 1.4 GeV2 to ensure that
W 2 Wth & mp) of the Q6F

p
2 �W , Q2� at various values of

Q2 $ 9 GeV2 compared with the prediction of the hSPT
Eq. (18) for three values of Q2 � 10, 20, 30 GeV2. For
GMN �Q2� we used parametrizations given in Ref. [16]. We
see that our predictions are consistent with experimental
data, although the accuracy of the data is not sufficient
to make a detailed comparison. Hence we also consider
the integrated quantity

R1.4
th dW2 Q6F

p
2 �W , Q2� which was

measured in [15] with a better accuracy and was found
to be practically constant for Q2 $ 9 GeV2. The experi-
mental value of the integral is in good agreement with our
result (18):
Z 1.4

th
dW2 Q6F

p
2 �W, Q2� �

Ω
0.10 6 0.02 GeV8 �E136� ,
0.11 6 0.02 GeV8 �hSPT� .

(20)
For the theoretical analysis we used as input the follow-
ing values for the nucleon form factors Q4GMp�Q2� �
1.0 6 0.1 GeV4 obtained at Q2 $ 10 GeV2 [17] and
Q4GMn�Q2� � 2�0.5 6 0.1� GeV4 extracted from
Ref. [18] at Q2 	 10 GeV2 [19]. For the summary of
the current information on various baryon form factors at
large momentum transfer, see, e.g., [20]. Note that the
contribution of the P-wave term in Eq. (18) is relatively
small (about 20%), so that the main part of the hSPT value
(20) is due to the strictly threshold contribution (S wave)
in Eq. (15). With the same set of parameters we predictR1.4

th dW2 Q6Fn
2 �W , Q2� � 0.05 6 0.02 GeV8. Note that

for the nucleon DAs which fit GMp�Q2�, GMn�Q2� at
Q2 $ 10 GeV2 (such DA significantly differ from the
asymptotic one; see, e.g., [12,13]) the Fn

2 �F
p
2 ratio near
022001-3
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FIG. 2. Values of F
p
2 �W , Q2� scaled by Q6 as a function of

W 2. The data of the E136 experiment are at average Q2 val-
ues of 9.4, 11.8 (3), 15.5, 19.2 (�), 23, 26, and 31 (�)
GeV2. The theoretical predictions of the hSPT (18) at Q2 �
10, 20, 30 GeV2 are given by dotted, solid, and dashed lines
respectively.

threshold is much smaller than the asymptotic value of
52�37 which follows from Eq. (7) with the asymptotic
distribution amplitude f�x� ~ x1x2x3. Thus this ratio is
extremely sensitive to the deviations of the nucleon DA
from the asymptotic form. Therefore measurements of
the neutron structure function in the near-threshold region
would considerably constrain the form of the nucleon
distribution amplitude.

In this Letter we derived a new soft-pion theorem for the
threshold pion production by a hard electromagnetic probe,
i.e., with the probe of virtuality Q2 ¿ L2 (L � 1 GeV
is a typical hadronic scale). This new hSPT allows us to
express the pion-production amplitudes in terms of the dis-
tribution amplitudes of the nucleon. The latter enter the
description of various nucleon form factors at large mo-
mentum transfer. These new relations give a possibility to
constrain further the nucleon distribution amplitude using
data on threshold inelastic electron scattering from the nu-
cleon at high momentum transfer.

Using a generic symmetric model for the nucleon
DAs we demonstrated that various observables for near-
threshold pion production at high momentum transfer are
sensitive to the parameters of nucleon DAs. This shows
that the near-threshold pion production by a hard electro-
magnetic probe is a new valuable source of information
about nucleon distribution amplitudes. Studies with a
broader range of models of nucleon DAs will be presented
elsewhere.

Our analysis was restricted to the leading twist QCD
contributions. The application of the methods developed
here to the models for soft contributions to the baryon
022001-4
form factors (see a review in [21]) would allow one to
derive predictions of these models for hard near-threshold
pion production. This might be an exciting possibility to
use hSPT to discriminate between soft and hard mecha-
nisms for high momentum transfer reactions. The study
of the discussed processes should be feasible at the top of
the current JLab energies and should be one of the high
priorities of JLab at 12 GeV.
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