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Structure and the Reflectionless /Refractionless Nature of Parabolic Diffusion-Wave Fields
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We show the impossibility of reflection and refraction phenomena at linear diffusion-wave-field (DWF)
interfaces. Instead, interfacial flux expressions are derived which involve coherent accumulation or de-
pletion phenomena subject to an interface flux conservation principle. The conditions for reflectionless
and refractionless interfaces are the parabolic nature and the concomitant Fickian constitutive relations
satisfied by DWFs. Simulations show that the reflection and Snell’s laws can be adequate approxima-
tions only under near-normal incidence conditions, in agreement with published experimental evidence
in wide areas of biomedical, electronic, and materials physics.
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In recent years the class of diffusion-based oscillations
named diffusion-wave fields (DWFs) [1] has been receiv-
ing much attention [1,2]. Applications are rapidly being
developed spanning thermal waves, physical electronics
(carrier plasma diffusion waves), (biomedical) physics of
turbid media (diffuse photon density waves), as well as
mass-transport waves in stratified media, electrolytes,
membranes, and polymers, and even controversial atmo-
spheric diffusive viscosity waves [3]. Formally, diffusion
waves arise from the classical parabolic diffusion equation
with an oscillatory force function in homogeneous media
=2C�r, t� 2

1
Dk

≠

≠tC�r, t� 1 H�r�C�r, t� �
1
2q�r� �1 1

eivt�. Here Dk is a transport property of the medium,
usually a field diffusivity in m2�s. The driving force gen-
erates oscillatory solutions for the field (wave) function
C�r, t� � F�r, v�eivt . A sort of pseudowave Helmholtz
equation is thus obtained via Fourier transformation of
C�r, t�:

=2F�r,v� 2 k2�r, v�F�r, v� � Q�r, v� , (1)

where k�r,v� is the complex diffusion wave number.
For thermal waves H�r� � 0, and k�v� � �1 1 i��L�v�,
where L�v� �

p
2Dt�v is the penetration depth, known

as “thermal diffusion length” and Dt is the thermal diffu-
sivity. For other common DWFs H�r� � H0 (a constant),
and the real and imaginary parts of the wave number are un-
equal, a fact that has important consequences in the spatial
distribution of the wave field [2]. In numerous studies
of boundary-value problems involving the diffusion-wave
equation (1), almost invariably a propagating, traveling-
wave approach is assumed in analyzing data and construct-
ing theoretical models [4]. Central to this approach is
the existence of reflection and refraction phenomena at in-
terfaces. In fact, thermal-wave mathematical formalisms
of thin multilayers to date are based on signal interpreta-
tions founded on “thermal ray” reflections at interfaces [5].
These theories have had success in support of experimen-
tal results obtained almost always under normal incidence.
Recently, Almond and Patel [4]and Bertolotti et al. [6]
have introduced three-dimensional theoretical treatments
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of thermal waves, which imply wave-front propagation and
spatial directionality. Owing to the similarity of the para-
bolic diffusion-wave equation (1) to the conventional hy-
perbolic Helmholtz equation with a complex wave number,
these treatments assume that diffusion waves act like, for
example, acoustic or optical waves, thus obeying the famil-
iar interfacial equal-angle reflection and Snell’s refraction
laws. O’Leary et al. [4] have presented extensive experi-
mental studies of diffuse photon-density-wave fields in tur-
bid (intralipid) media across optical interfaces which are
only partly supported by theoretical interpretations based
on three-dimensional coherent wave fronts reflecting and
refracting at interfaces. These authors invariably noted that
the wave fronts become quite distorted when the source
“ray angle” exceeds �30±. They assigned the deviations to
internal reflections, diffraction, aberrations, and “spurious
boundary effects.” The same group (O’Leary et al. [4]) has
further labeled diffuse photon density waves as “traveling
waves.” Such assignations are abundant in the literature.
They are, however, inconsistent with the unidirectionality
of the diffusion equation, where power propagates only ac-
cording to Fourier (or Fickian) flux constitutive equations.
Understanding the precise physical nature of parabolic dif-
fusion waves thus becomes paramount, as it ultimately
controls the limits of spatial resolution of multilayer struc-
tures, imaging, and tomographic reconstruction processes
using these waves (subsurface mechanical defects, elec-
tronic carrier lifetime scans, and/or tumor localization).

We assume a general second order differential opera-
tor L�u� � A

≠2u
≠t2 1 B

≠2u
≠x≠t 1 C

≠2u
≠x2 1 D

≠u
≠t 1 E

≠u
≠x 1 Fu,

which represents the partial differential equation L�u� � 0.
For simplicity, a one-dimensional spatial coordinate is con-
sidered. If L�u� is parabolic with A � 0, using the para-
metric representation j � j�x, t�; h � h�x, t� results in
the normal form

Lp�u� � C
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In what amounts to renormalizing the normal form above,
one may set ≠h�≠x � 1 and ≠j�≠t � 1, in order to con-
form to the structures of the diffusion equations from which
the commonly encountered DWFs are derived through a
linear Fourier transformation. The single characteristic
curve j�t� � t � const with propagation velocity y �
dx�dt � ` indicates that the parabolic field Lp�u� � 0
evolves unidirectionally (forward) in time away from the
source everywhere simultaneously, as the operation t !
2t does not leave the solution invariant. This type of
simultaneity, and the existence of a single characteristic
curve, precludes reflections at interfaces. The condition
A � 0 is not central to the existence of reflectionless and
refractionless interfaces. The crucial conditions for this be-
havior are the parabolic nature and the gradient-driven con-
stitutive relation of the wave field. The lack of wave-front
structure from parabolic diffusion fields with A � 0 was
first recognized in a statement by Morse and Ingard in 1968
([7], p. 479). From an intuitive viewpoint, since energy
propagation is Fickian, parabolic fields must be reflection-
less because energy cannot propagate back against the field
gradient (particle or mass density, temperature, etc.).

Since hyperbolic wave existence hinges on the assump-
tion of propagating wave fronts and nonstationary direc-
tion wave vector, a different physical picture must be
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sought at a diffusive interface. To reveal the physical as-
pects of interfacial relationships in diffusion-wave fields
and not be hindered by the mathematics, we consider the
case of thermal diffusion waves with the simplest of all
possible three-dimensional sources in a thermally isotropic
half-space 0 # z , ` of thermal conductivity k1 under-
going boundary interactions along the plane z � 0. The
geometry involving two half-spaces separated by a plane
interface is shown in Fig. 1. A point source of strength Q0,
located at r � r1, generates thermal waves at angular
modulation frequency v. The diffusion of these waves is
not wave-vector directional, but the flux Fj is solely driven
by temperature gradients (Fourier’s or Fick’s law),
Fj�r, v� � 2kj===Tj�r, v�. The spatial distribution of the
thermal-wave field is proportional to the Green function
with source coordinate r1:�x1, y1, z1� in the domain z . 0
(subvolume V1 with thermal properties k1,Dt1). An ap-
propriate spatial impulse-response function must be deter-
mined in the domain z , 0 (subvolume V2 with thermal
properties k2,Dt2). The solution is given by [1] T1�r; v� �
�Dt1�k1�

RRR
V1
Q0d�r0 2 r1�G�r j r0; v�dV0. When

applied to Eq. (1) subject to thermal-wave field and flux
continuity at the interface z � 0, it can be expressed in
terms of Hankel transforms due to the azimuthal symmetry
(isotropicity) of the problem:
T1�r; v� �
Q0

4pk1

Z `

0

1
s1�l�

∑
e2s1jz2z1j 1 G12�l�e2s1�z1z1�

∏
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and
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0
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on the other half-space, where s1�l� �
q

l2 1
iv
Dt1

; s2�l� �q
l2 1

iv
Dt2

; G12�l� � j12�l�21
j12�l�11 ; jij�l� � kisi�l�

kjsj�l� , and

r �
p

�x 2 x1�2 1 � y 2 y1�2 is a position-vector magni-
tude. J0�lr� is the Bessel function of the first kind of order
zero. The diffusion-wave flux vectors in both half-spaces
j � 1, 2 are Fj�r, v� � 2kj�

≠Tj�r,z�
≠r er 1

≠Tj�r,z�
≠z ez� and

the azimuthal symmetry of the media results in the flux
vector being independent of the direction ef. G12�l� can
be interpreted as the “thermal-wave interface-interaction
coefficient.” Each term multiplying this coefficient is,
therefore, associated with the value of the flux after the
interaction of the thermal wave with the interface. In the
literature this has been labeled the “reflected” component
[2,4]. At any point on the interface z � 0 three flux vec-
tors can be determined: incident, Fi, interface-interacted,
Fr , and transmitted, Ft; see Fig. 2. It can be shown
that there exists a radial (tangential) flux discontinuity
across the interface z � 0. If �k1,Dt1� . �k2,Dt2�, or,
equivalently, e1 . e2 (ej � kj�

p
Dtj: thermal effusivity

in J�m2s1�2K) the amount of discontinuity is given by
er ? ��Fi 1 Fr� 2 Ft� �
Q0

2p

µ
k1

k2
2 1

∂ Z `

0

e2s1z1

s2�l� �1 1 j12�l��
J1�lr�l2dl . (3)
The radial discontinuity disappears only if the thermal
conductivities of both domains V1 and V2 are equal. Fur-
thermore, conservation of diffusion-wave flux at z � 0
requires that

Fi�x, y, 0; v� 1 Fr �x, y, 0; v� � Ft�x, y, 0; v� . (4)

Considering the z components of the various fluxes at the
interface and noting from Fig. 2 that ñ � 2ez , the out-
ward flux normal to the plane z � 0 is subject to the con-
tinuity condition
ñ ? Fi�x, y, 0; v� � ñ ? �2Fr�x, y, 0; v� 1 Ft�x, y, 0; v��

�
Q0

4p

Z `

0
e2s1z1J0�lr�ldl . (5)

The conservation law Eq. (5) with ReG12�0� . 0 is one of
thermal-wave energy accumulation within the domain V1,
corresponding to the thermal effusivity relation e1 . e2. If
ReG12�0� , 0, i.e., in the case e1 , e2, the opposite oc-
curs and Eq. (5) becomes a thermal-wave energy depletion
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FIG. 1. Geometry of an infinite plane interface (z � 0) sepa-
rating two half-spaces, one with a point source of diffusion
waves at r � r1.

condition. Using the vector components ñ ? Fi � Fiz, ñ ?

Fr � Frz, ñ ? Ft � Ftz , Fig. 2, the continuity condition
of normal flux across the interface, Eq. (5), can be written
in terms of the norms kFizk � kFrzk 1 kFtzk in the ac-
cumulation case, i.e., when ReG12�0� . 0. On the other
hand, if k1 , k2 and e1 , e2, the coefficient ReG12�0� ,

0, and the vector Fr points into the domain z , 0.
The continuity condition of normal flux across the

interface, Eq. (5), can be written kFizk 1 kFrzk � kFtzk.
From the interface vector diagram of Fig. 2, the incidence
and interface-interacted angles can be calculated from
tanu1 � j

R`
0

e2s1z1

s1�l� J1�lr�l2 dlj � j
R`

0 e2s1z1J0�lr�ldlj

and tanu2 � j
R`

0
e2s1 z1

s1�l� G12�l�J1�lr�l2 dlj�
j
R`

0 e2s1z1G12�l�J0�lr�l dlj. The amplitudes must be
used instead of the real parts, as a fraction of a given DWF
flux vector is stored in the out-of-phase component and
must be accounted for. It is clear that for a given radial
location r in general u1 fi u2, with the exception of
G12�l� � 1. This can occur only when j12�l� ! `, i.e.,
when k2 � 0 (the medium in the subvolume V2 is a
perfect insulator). This leads to the perfect accumulation
condition: F1�r, 0� � 0. It occurs because the flux con-
servation law Eq. (4) at the interface z � 0 reduces to
Fr�r, 0� � 2Fi�r, 0�. This implies ju1j � u2 in Fig. 2,
reminiscent of the conventional reflection law. For all other

FIG. 2. Interface diffusion-wave flux vector relations under
accumulation conditions.
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interface-interaction coefficients, that law is not valid. For
G12�l� � 21, implying j12�l� � 0, i.e., k2 ! `, a
physically different picture emerges, although tanu1 �
tanu2. Here, the flux vector Fr points in the direction
opposite to the one shown in Fig. 2, so that Fi �r, 0� 1

Fr�r, 0� 5 0, yielding again F1�r, 0� � 0. This occurs
so that the flux will remain bounded across the interface,
on the other side of which it diverges, Ft ! `̀̀. The an-
gular relationship resulting from the equality of tangents
is ju1j � p 2 u2. We may now examine the case of
Snell’s law of refraction. Using elementary trigonometric
identities

tanu3 �

Ç Z `

0

e2s1z1

s2�l� �1 1 j12�l��
J1�lr�l2 dl

Ç
¡Ç Z `

0

e2s1z1

�1 1 j12�l��
J0�lr�ldl

Ç
. (6)

It follows that �sinu3�sinu1� � f�r�, where f�r� is a com-
plicated function of the radial distance along the plane
z � 0. This equation negates Snell’s law of refraction for
DWFs, according to which the ratio of the sines of the in-
cident and transmitted/refracted angles must be constant
for any incident angle u1; i.e., it must be independent of
radial position r. This result is consistent with the ab-
sence of propagating coherent wave-front structure in the
diffusion-wave field. Figure 3 shows plots of the relation
of ju1j to u2 corresponding to G12�0� . 0 (accumulation),
and the special case G12�l� � 0, �e1 � e2� which, how-
ever, does not imply identical k and Dt across the interface
z � 0. These simulations show that under interfacial ac-
cumulation conditions the departure from the reflectionlike
behavior (45± line) occurs for u2 . 30± 40± for most G12
cases other than zero. This is consistent with experimen-
tal reports using diffuse photon density waves (O’Leary
et al. [4]). The greater the transport property discontinu-
ity across the interface, the more reflectionlike the behav-
ior is (strong accumulation limit). Extensive simulations
reveal that the zigzags across the 45± line at higher angles
are associated with interferencelike (linear superposition)
phenomena between the real and imaginary components
of the coherently diffusing power. Simulations of Eq. (6)
have shown that, under accumulation, Snell’s law is ap-
proximately valid for near-normal incidence [small dis-
tances r away from the point (0, 0) on the z � 0 plane]
and adiabatic interfaces, with the transport behavior devi-
ating significantly at longer distances. This occurs for the
same reasons as discussed with regard to Fig. 3. Under
depletion, deviations appear at all distances away from the
point (0, 0); see Fig. 4.

To fully elucidate the causes of the accumulation/deple-
tion behavior of diffusion waves at interfaces, it is useful
to compare it with that of conventional scalar hyperbolic
propagating wave fields. It is most convenient to consider
the acoustic pressure wave field Pj�r, v�; j � 1, 2, in the
geometry of Fig. 1. With only a change in the transport
parameters �kj,Dtj� $ �cj ,Dj�, j � 1, 2, where cj is the
020801-3
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FIG. 3. Relationship between amplitudes of angle of incidence
u1 and angle of “reflection,” u2, under accumulation conditions
corresponding to Fig. 2. The distance from the point source at
r1 was kept constant, d �

p
r2 1 z2.

acoustic velocity and Dj is the density of medium ( j),
Eq. (1) must be replaced by the Helmholtz equation
=2Pj�r, v� 1 k2

j �r,v�Pj �r, v� � Q�r, v�; kj � v�cj .
The measured acoustic signal is proportional to the pressure
intensity vectors Ij�r, z; v� � 2

i
2vDj

===�jPj�r, z; v�j2�,
which are gradients of square-law fields [7]. These are
directional with angles u1 (incident), u2 (reflected), and u3

(refracted) as conventionally shown in an interface acous-
tic “ray” diagram. An intensity conservation principle at
the interface may be derived if one is careful to convert
the non-normal transmitted intensity to total acoustic
power transport per unit area of the surface as follows:
I�
t �r, 0; v� � �cosu3� cosu1�It�cos, 0; v�. Then it is

straightforward to show that the norm of the incident in-
tensity is equal to the sum of reflected plus transmit-
ted intensity norms: kIi �r, 0; v�k � kIr �r, 0; v�k 1

kI�
t �r, 0; v�k. This is the conventional scalar wave-field

FIG. 4. “Snell’s law” formulation under depletion conditions.
The distance from the point source at r1 was kept constant,
d �

p
r2 1 z2.
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conservation law for all values of the interface acoustic cou-
pling coefficient G12. It is mathematically similar to the
diffusion-wave flux condition under accumulation, but not
under depletion. Furthermore, the reflection law ju1j � u2
and Snell’s law �sinu1�sinu3� � c1�c2 are readily obtained
from Ij�r, z; v� � 2

i
2vDj

===jPj�r, z; v�j2. For parabolic
diffusion-wave fields the square-law reflection-refraction
principles must be replaced by field-gradient-driven
accumulation-depletion rules consistent with unidirection-
ality. These interfacial phenomena can account for the ex-
perimentally observed distortions of equisignal contours [4]
without the invocation of “internal reflections, diffraction,
aberrations, and spurious boundary effects.” They tend to
limit the accuracy and resolution of imaging techniques
such as diffuse photon density waves to angles no larger
than 30±–40± from the normal, because the very-near-field
nature of the DWF critically depends on interfacial flux
processes. In contrast, energy propagation of well-known
hyperbolic wave fields, including spatially damped oscilla-
tions, is detected with instruments that are sensitive to the
amplitude squared, such as electromagnetic power decay
within a skin depth in good conductors and eddy currents.
These fields exhibit multidirectional properties, including
their ability to be “beamed” (guided directionality), and
conventional reflection and refraction behavior at inter-
faces. In conclusion, the historical and widespread inter-
pretation of DWFs in terms of propagating hyperbolic
wave-field concepts at interfaces, including diffusion-
limited multiply scattered waves [2–4], is fundamentally
inconsistent with their parabolic and Fickian nature.
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