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We present a formula that determines the optimal number of qubits per message that allows asymp-
totically faithful compression of the quantum information carried by an ensemble of mixed states. The
set of mixed states determines a decomposition of the Hilbert space into the redundant part and the
irreducible part. After removing the redundancy, the optimal compression rate is shown to be given by
the von Neumann entropy of the reduced ensemble.
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Consider a source that generates a message i with proba-
bility pi . Sequences of the messages independently drawn
from this source can be compressed into sequences of
bits and decompressed back to the original sequences of
messages. The necessary and sufficient number of bits
per message allowing asymptotically faithful compression
and decompression is given by the Shannon entropy S �
2

P
i pi log2 pi . This result, called the noiseless coding

theorem [1], is one of the core results of the classical in-
formation theory. The quantum analog of this theorem,
which will naturally form a basis of quantum information
theory, was first considered by Schumacher [2]. In this
quantum data compression, the source emits a system in
a quantum state ri with probability pi , and sequences of
the systems emitted from this source are assumed to be
compressed into qubits. It was shown [2–4] that, when all
ri are pure, the least number of qubits allowing asymp-
totically faithful recovery of the original states is given by
the von Neumann entropy S�r� � 2Trr log2 r of the den-
sity operator of the ensemble r �

P
i piri . When �ri� in-

cludes mixed states, the problem is still open [5–9]. Since
compression schemes applicable to the pure-state signals
can also be successfully used for the mixed-state cases
[10], the optimal compression rate Ip is bounded from
above by the von Neumann entropy, namely, Ip # S�r�. It
has also been proved [5] that the Levitin-Holevo function
[11], ILH � S�r� 2

P
i piS�ri �, is a lower bound for Ip,

namely, ILH # Ip.
The aim of this Letter is to identify the optimal com-

pression rate for the mixed-state ensemble E � �pi , ri�.
We first introduce a function IR�E � that is given as the von
Neumann entropy of a reduced ensemble ER � �pi, si�.
The ensemble ER is derived from E by stripping off the
redundant parts. Then we prove that IR�E � is equal to the
optimal compression rate Ip.

The problem considered here is formulated as fol-
lows. Suppose that the source produces the ensemble
E � �pi, ri �, namely, it emits a system in a quantum
state ri with probability pi . Using this source N times,
we obtain a state rN

l � ri1 ≠ · · · ≠ riN acting on a
Hilbert space H N � H1 ≠ · · · ≠ HN with probability
pN

l � pi1 · · · piN , where l represents a set of indexes
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�i1, . . . , iN �. We assume that the dimension d of each
space Hn is finite. Now H N is given to Alice, who
compresses the signal rN

l into r̃l acting on a Hilbert
space HC with a dimension usually smaller than dN .
This process is generally written by a quantum opera-
tion (linear completely positive trace-preserving map)
rN

l ! r̃l � LA�rN
l �. The operation LA is independent

of l since only the systems H N are given to Alice and
no additional information on l is available. The coded
signal r̃l is passed on to Bob through a noiseless channel,
and he decompresses the signal by a quantum operation
r̃l ! r

0
l � LB�r̃l�, where r

0
l acts on H N . To measure

the quality of the whole process rN
l ! r

0
l, we use the fi-

delity F [12] given by F�r, s� � �Tr
p

r1�2sr1�2 �2. The
quality of a compression scheme specified by �LA, LB�
for the ensemble E is given by the average fidelity,

F̄ �
X

l

plF�rN
l , r0

l� . (1)

Now, for a fixed source E , consider a sequence of com-
pression schemes �L�N�

A , L
�N�
B � with increasing N . When

limN!`F̄ � 1, the sequence gives asymptotically faithful
compression of E . Such sequences are called protocols
[5]. For a given protocol P, the quantity R�P� charac-
terizing the asymptotic degree of compression is defined
through the size of HC measured in the number of qubits,
namely,

R�P� � lim
N!`

�log2 dimHC��N . (2)

Then, the optimal compression rate Ip�E � for the ensemble
E is formally defined as

Ip�E � � inf
P

R�P� . (3)

This means that, for arbitrary small d . 0, asymptotically
faithful compression is possible if Ip 1 d qubits per mes-
sage are given, and it is impossible if Ip 2 d qubits per
message are given.

A useful tool used for stripping off the redundant part
in E and deriving the formula for Ip�E � below is the the-
ory [13] that characterizes the quantum operations which
preserve a set of states �ri� (map ri to ri) acting on a
© 2001 The American Physical Society 017902-1
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Hilbert space H . To state the results of this theory, it is
convenient to express quantum operations in unitary rep-
resentation, namely, by unitary operations U acting on the
combined space H ≠ HE, where HE represents an aux-
iliary system initially prepared in a standard pure state SE.
Then, it was shown [13] that, given �ri�, we can find a de-
composition of HA defined as the support of

P
i ri (HA

is generally a subspace of H ) written as

HA �
M

l

H
�l�

J ≠ H
�l�

K , (4)

in such a way that any U preserving �ri� is expressed in
the following form

U�1A ≠ SE� �
M

l

1
�l�
J ≠ U

�l�
KE�1�l�

K ≠ SE� , (5)

where U
�l�
KE are unitary operators acting on the combined

space H
�l�

K ≠ HE. Under this decomposition, ri is writ-
ten as

ri �
M

l

q�i,l�r
�i,l�
J ≠ r

�l�
K , (6)

where r
�i,l�
J and r

�l�
K are normalized density operators act-

ing on H
�l�

J and H
�l�

K , respectively, and q�i,l� is the proba-
bility for the state to be in the subspace H

�l�
J ≠ H

�l�
K . r

�l�
K

is independent of i, and �r�1,l�
J , r

�2,l�
J , . . .� cannot be ex-

pressed in a simultaneously block-diagonalized form. An
explicit procedure to obtain this particular decomposition
is also given in [13].

The form of Eq. (6) implies that the spaces H
�l�

K are re-
dundant in the ensemble E � �pi , ri�. Consider the states
si �

L
l q�i,l�r

�i,l�
J in which the redundancy has been re-

moved, and let ER � �pi, si� be the corresponding en-
semble. The von Neumann entropy of ER can be regarded
as a function of the ensemble E , denoted as IR�E �, since
the decomposition (6) is determined by the set �ri�. What
we prove below is that the optimal compression rate Ip�E �
is given by the function IR�E �.

We begin the proof by noting that the two ensembles
E and ER are completely interchangeable, namely, there
exist quantum operations Lsr and Lrs that satisfy
Lsr�rN

l � � s
N
l and Lrs�sN

l � � r
N
l . If a compression

scheme �LA, LB� for r
N
l is given, we can compose a

compression scheme �LALrs, LsrLB� for s
N
l . Since

the fidelity does not decrease under a quantum operation
[6,14], we have the inequality F���rN

l , LBLA�rN
l ���� #

F���sN
l , LsrLBLALrs�sN

l ����. Hence, the composed
scheme always has a better or equal average fidelity. This
implies that if a protocol for E with an asymptotic degree
of compression R is given, we can compose a protocol for
ER with the same degree R [5,6]. Consequently, we have
Ip�E � $ Ip�ER�. Since a similar argument can be made
with r and s interchanged, we obtain the equality

Ip�E � � Ip�ER� . (7)
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Now it is sufficient to consider the cases where �ri�
have no redundancy, namely, si � ri and ER � E , and
we will prove the relation Ip�E � � S�r� in these cases.
Since we already have the inequality Ip�E � # S�r�, what
we need is the opposite inequality, Ip�E � $ S�r�. We will
give a sketch of the proof first.

In a compression-decompression scheme �LA, LB�, the
state eventually evolves as r

N
l ! r

0
l � L�rN

l �, where
L � LBLA. In this process, the marginal state in the first
system (H1) evolves from ri1

to Tr2···N �r0
l�. This evolu-

tion can be regarded as a result of a quantum operation L1,
defined as

L1�ri� �
X

pi2
· · · piN

Tr2···NL�ri ≠ ri2
≠ · · · ≠ riN

�

� Tr2···NL�ri ≠ r ≠ · · · ≠ r� . (8)

Note that L1 is determined by L and the total density
operators (r) of the initial state ensembles of the other
N 2 1 systems. In a protocol, a scheme �LA, LB� for
large N is nearly perfect. For this scheme, L1 will almost
preserve the states �ri�. The decomposition (4) for �ri�
satisfying ri � si can be simplified as HA �

L
l H

�l�
J

since H
�l�

K is a one-dimensional space. Correspondingly,
the requirement (5) for preserving �ri� can be written as

U�1A ≠ SE� �
M

l

1
�l�
J ≠ U

�l�
E SE , (9)

where U
�l�
E are unitary operators acting on HE. The

operation L1, which nearly preserves �ri�, should thus
be approximately written in the form (9). Next, take
a diagonalization of the total density operator, r �P

ls pl,sjl, s	 
l , sj, in such a way that, for a fixed l, the set

�jl, s	� forms a basis of H
�l�

J . Let us consider an ensemble
E� � �pl,s, rl,s � jl, s	 
l, sj� composed of orthogonal
pure states. If we replace the source from E to E� in
the scheme �LA, LB�, the operation L1 does not change
because the total density operator is identical for the two
ensembles. Then, the error in the transmission of jl, s	
will be small since the operation of the form (9) preserves
�jl, s	�. This means that, by a projection measurement
in the basis �jl, s	�, classical information close to NS�r�
bits can be sent through the channel HC. This implies
log2 dimHC * NS�r�. Combined with the definitions
(2) and (3), we have Ip�E � * S�r�.

The strict proof is given by clarifying the meaning
of “nearly” in the above sketch, by introducing several
measures ( f and g below) characterizing the nearness.
In unitary representation, any quantum operation for the
system H1 can be represented by a unitary operator
U in the d 1 d2 � n dimension [15], acting on the
combined space of H1 and an auxiliary system HE
with dimension d2. Let us introduce two non-negative
continuous functions f, g : U�n� ! R that measure
how U [ U�n� is close to the form (9). The first one
is defined as f�U� � 1 2

P
i piF���ri, LU �ri����, where
017902-2
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LU �ri� � TrE�U�ri ≠ SE�Uy�. Since f�U� � 0 iff
LU �ri� � ri for all i, f21�0� is equal to the set of U that
can be expressed in the form (9). The other measure is
related to the average error probability of the transmission
of E�, defined as pe � 1 2

P
l,s pl,sTr���rl,sLU�rl,s����.

For later convenience, we use the function g�U� defined
through pe, namely, g�U� � H�pe� 1 pe log2�d 2 1�
with H�p� � 2p log2 p 2 �1 2 p� log2�1 2 p�. Since
the form (9) preserves �rl,s�, g�U� is zero for any
U [ f21�0�. An important relation between the two
measures is that, if g is away from zero, f must also be
away from zero. This is proved as follows. Let us define
the set X̄d � �U j g�U� $ d� for arbitrary d . 0. Since
g is continuous, X̄d is a closed subset of U�n�. Since
U�n� is compact and f is continuous, the image f�X̄d�
is closed in R. X̄d > f21�0� � 0� implies that 0 ” f�X̄d�.
Therefore, f�X̄d� has its minimum h�d� . 0. This result
will be used to derive the inequality (11) below. Note that
the functional dependence of h on d is determined by E ,
and is independent of N .

Next, we consider the transmission of classical vari-
able ��l, s�� through the source E� and the scheme
�LA, LB�. Let Xk�k � 1, . . . ,N� be independent ran-
dom (vector) variables with Pr�Xk � �l, s�� � pl,s, and
X � �X1, . . . , XN �. Suppose that the value of Xk is en-
coded to the state jl, s	 in the system Hk , the compression-
decompression scheme is applied to the combined system
H N , and finally the state in each Hk is measured by
the projection to the basis �jl, s	�, producing a result Yk .
The transmitted data is represented by Y � �Y1, . . . , YN�.
The quantum operation Lk on each system Hk can be
written in a similar form as (8). Let us take a unitary
representation Uk [ U�n� for Lk . A lower bound for the
mutual information I�X;Y � � H�X� 2 H�X jY� in this
example is obtained as follows. Since Xk are inde-
pendent, we have H�X� �

P
k H�Xk� � NS�r�. From

the general properties of entropy, we obtain the fol-
lowing inequalities [16]: g�Uk� $ H�Xk jYk� (Fano’s
inequality), H�Xk jYk� $ H�Xk jY� (conditioning reduces
entropy), and

P
k H�Xk jY� $ H�X jY� (independence

bound on entropy). Combining these, we have I�X; Y� $

NS�r� 2
P

k g�Uk�. On the other hand, I�X;Y � cannot
exceed the capacity of the channel HC [17], namely,
log2 dimHC $ I�X;Y �. We thus arrive at the relation

X

k

g�Uk��N $ S�r� 2 �log2 dimHC��N . (10)

Now let us suppose that the number of available
qubits per message is smaller than S�r�, namely,
�log2 dimHC��N � S�r� 2 d with d . 0. Since the
numbering of the systems Hk is arbitrary, we can gen-
erally assume that g�U1� is not smaller than any other
g�Uk �. Then, from the relation (10) we have g�U1� $ d,
or equivalently, U1 [ X̄d. As shown above, this implies
f�U1� � 1 2

P
i piF���ri , L1�ri���� $ h�d� . 0. From
017902-3
the properties of the fidelity function F, we obtain

F̄ �
X

l

pN
l F���rN

l ,L�rN
l ����

#
X

l

pN
l F���ri1

, Tr2···N L�ri1
≠ ri2

≠ · · · ≠ riN
����

#
X

i

piF���ri , L1�ri���� # 1 2 h�d� , (11)

since the fidelity does not decrease under partial trace (the
first inequality) and F�s, r� is convex as a function of
r (the second). The average fidelity of the compression-
decompression scheme never exceeds 1 2 h�d� , 1 for
any N , where h�d� is independent of N . This means that
no protocols exist that satisfy R�P� � S�r� 2 d. Hence,
Ip�E � $ S�r�. Combined with the opposite inequality
Ip�E � # S�r�, we obtain Ip�E � � S�r� for the ensemble
E satisfying E � ER. Together with Eq. (7), we obtain
the formula for general E ,

Ip�E � � IR�E � , (12)
which is the main result of this Letter. For convenience,
we repeat the definition of the function IR�E �: From
E � �pi, ri�, determine ER � �pi , si� through the de-
composition (6). Then, IR � S�s� with s �

P
i pisi.

The protocols we considered above are asymptotically
reversible, namely, Bob is required to asymptotically re-
produce everything that was given to Alice. Bob can thus
compress the reproduced signals again with the same de-
gree of compression. This class of protocols is called blind
protocols, and the obtained bound Ip is called passive in-
formation [5,6]. In another scenario, not only the system
H N but also the identity of the state r

N
l , namely, the in-

dex l, is disclosed to Alice. Bob still has to decompress
the signal without additional knowledge of l. This class
of protocols is called visible protocols, and the correspond-
ing optimal compression rate is called effective informa-
tion Ieff [5,6]. This scheme is irreversible and cannot be
repeated, but the compression rate Ieff may be better than
Ip. The difference Id � Ip 2 Ieff is called information de-
fect. For an ensemble of pure states, it was shown that the
information defect is zero [4]. While the identity of Ieff is
still an open question, the derived form of Ip assures the
presence of nonzero information defect for an ensemble
of mixed states, which can be shown as follows. In the
second scenario, Alice can compress the classical value l

into the length of Shannon entropy, and send it directly to
Bob. This indicates Ieff # 2

P
i pi log2 pi. For example,

if p1 � p2 � 1�2, Ieff # 1. On the other hand, by allow-
ing the dimension d large, we can find examples of r1 and
r2 with arbitrarily large Ip, according to the result (12).

Finally, we would like to raise several problems which
are worthy of future investigations. What we have proved
in this Letter corresponds to the so-called weak converse
of Shannon’s noiseless coding theorem, namely, if Ip 2 d

qubits are available per system, the fidelity cannot reach
unity in N ! `. For classical or pure-state ensembles,
the strong converse holds, namely, the fidelity goes to
017902-3
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zero when N ! `. Whether this statement holds for
mixed-state cases or not is an important open question.
In the proof of the main result, we utilized the observation
that any protocols for a mixed-state ensemble E with no
redundancy (E � ER) can be used to transmit the “puri-
fied” ensemble E� with errors asymptotically negligible
per message. The requirement (F̄ ! 1) for the compres-
sion protocols for E� is more stringent, namely, the to-
tal errors for the whole N messages must be negligible.
Whether the protocols for E always work as compression
protocols for E� or not is another open question.

In summary, we derived the formula for the optimal
compression rate (passive information) for a general
mixed-state ensemble �pi, ri �. This will give a measure
of how much information is stored in the ensemble of
quantum states in terms of qubits. We have also shown the
presence of nonzero information defects, namely, there
are cases where knowing the identity of states gives more
efficient compression.
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