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Nonequilibrium Transitions in Fully Frustrated Josephson Junction Arrays
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We study the effect of thermal fluctuations in a fully frustrated Josephson junction array driven by a
current I larger than the apparent critical current Ic�T �. We calculate numerically the behavior of the
chiral order parameter of Z2 symmetry and the transverse helicity modulus [related to the U(1) symmetry]
as a function of temperature. We find that the Z2 transition occurs at a temperature TZ2�I� which is lower
than the temperature TU�1��I� for the U(1) transition. Both transitions could be observed experimentally
from measurements of the longitudinal and transverse voltages.
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The study of nonequilibrium steady states of strongly
driven many-degrees-of-freedom systems has recently
attracted broad attention [1–4], mainly regarding vortices
in type II superconductors [1–3] and charge density waves
[4]. In two dimensions, Josephson junction arrays (JJA)
are a well controlled system [5] where this issue can be
investigated for both random [6] and periodic pinning [7].
In the presence of a magnetic field such that there is a half
flux quantum per plaquette, f � Ha2�F0 � 1�2, the JJA
corresponds to the fully frustrated XY model [8–11]. The
ground state is a “checkerboard” vortex lattice, in which a
vortex sits in every other site of a square grid [8]. In this
case, there are two types of competing order and broken
symmetries: the discrete Z2 symmetry of the ground state
of the vortex lattice, with an associated chiral (Ising-like)
order parameter, and the continuous U(1) symmetry asso-
ciated with superconducting phase coherence. The critical
behavior of this system has been the subject of several
experimental [10] and theoretical [8,9,11–16] studies.
There are a Z2 transition (Ising-like) and a U(1) transi-
tion (Kosterlitz-Thouless-like) with critical temperatures
TZ2 * TU�1�. There is a controversy about these tempera-
tures being extremely close [14] or equal [13,15,16]. The
dynamical transitions in driven systems studied up to now
[1–4,6,7] involve only continuous (translational or gauge)
symmetries. Therefore it is interesting to study a system
in which there is a discrete �Z2� symmetry, and if and how
the nonequilibrium Z2 and U(1) transitions occur. Previ-
ously, we have found dynamical transitions of the vortex
lattice in a JJA with a field density of f � 1�25 [7]: for
large currents I there is a melting transition of the mov-
ing vortex lattice above the transverse superconducting
transition: TM�I� . TU�1��I�. Interestingly, here we find
the opposite case: the order of the checkerboard vortex
lattice is destroyed at a much lower temperature than the
transverse superconducting coherence, TZ2�I� , TU�1��I�.

The Hamiltonian of the frustrated XY model is

H � 2
X

m,n

F0I0

2p
cos�u�n 1 m� 2 u�n� 2 Am�n�� ,

(1)
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where I0 is the critical current of the junction between
the sites n and n 1 m in a square lattice �n � �nx , ny�,
m � x̂, ŷ�, RN is the normal state resistance, and um�n� �
u�n 1 m� 2 u�n� 2 Am�n� � Dmu�n� 2 Am�n� is
the gauge invariant phase difference with Am�n� �
2p

F

R�n1m�a
na A ? dl. In the presence of an external magnetic

field H we have Dm 3 Am�n� � Ax�n� 2 Ax�n 1 y� 1

Ay�n 1 x� 2 Ay�n� � 2pf, f � Ha2�F0, and a is
the array lattice spacing, with f � 1�2 for the fully
frustrated JJA. We take periodic boundary conditions
(pbc) in both directions in the presence of an external
current Iext, following the method used in [6], in arrays
with L 3 L junctions [17]. The vector potential is
taken as Am�n, t� � A0

m�n� 2 am�t� where in the Landau
gauge A0

x�n� � 22pfny, A0
y�n� � 0, and am�t� will

allow for total voltage fluctuations. With this gauge
the pbc for the phases are u�nx 1 L, ny� � u�nx , ny�
and u�nx , ny 1 L� � u�nx , ny� 2 2pfLnx . The current
flowing in the junction between two superconducting
islands in a JJA is modeled as the sum of the Josephson
and the normal currents [6,7,11,18]:

Im�n� � I0 sinum�n� 1
F0

2pcRN

≠um�n�
≠t

1 hm�n, t� ,

(2)

where the thermal noise fluctuations hm have corre-
lations �hm�n, t�hm0�n0, t0�� �

2kT
RN

dm,m0dn,n0d�t 2 t0�.
The condition of a current flowing in the y direction:P

n Im�n� � IextL2dm,y determines the dynamics of am�t�
[6,7]. After considering local conservation of current,
Dm ? Im�n� �

P
m Im�n� 2 Im�n 2 m� � 0, we obtain

the full RSJ-Langevin dynamical as in [6,7]. We nor-
malize currents by I0, time by tJ � 2pcRNI0�F0, and
temperature by I0F0�2pkB. We solve the dynamical
equations with time step Dt � �0.05 2 0.1�tJ and inte-
gration times 10 000tJ after a transient of 5000tJ .

We study the fully frustrated JJA for system sizes of L �
8, 16, 24, 32, 48, 64, 128. In the absence of external cur-
rents, we find an equilibrium phase transition at Tc � 0.45
which, within a resolution of DT � 0.005, corresponds to
© 2001 The American Physical Society 017004-1
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a simultaneous (or very close) breaking of the U(1) and the
Z2 symmetries. Here we will analyze the possible occur-
rence of these transitions as a function of temperature when
the JJA is driven by currents well above the zero tempera-
ture critical current I . Ic0 � �

p
2 2 1�I0 � 0.414I0.

U(1) symmetry and transverse superconductivity.—In
the driven JJA superconducting coherence can be de-
fined only in the direction transverse to the bias current
[7,19]. We calculate the transverse helicity modu-
lus Yx �

1
L2 �

P
n cosux�n�� 2

1
T

1
L4 	��

P
n sinux�n��2� 2

��
P

n sinux�n���2
. [In order to calculate the helicity
modulus along x, we enforce strict periodicity in u by
fixing ax�t� � 0.] We find that Yx is finite at low
T and vanishes at a temperature TU�1��I�. In Fig. 1a
we show the behavior of Yx�T� for a current I � 0.9
in a 64 3 64 JJA. The inset of Fig. 1a shows Yx for
sizes L � 32, 48, 64, 128, and we see that a transition
temperature can be defined independently of lattice
size. This transition is reversible: we obtain the same

FIG. 1. Breaking of the U(1) symmetry for a large current:
I � 0.9, I . Ic�0�, system size 64 3 64. (a) Helicity modulus
Yx vs temperature T (≤, increasing T ; }, decreasing T). Inset:
size effect for L � 32, 48, 64, and 128. (b) Transverse volt-
age for a small transverse current, Itr � 0.1, vs T . (c) Vortex-
antivortex pairs density, nya vs T .
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behavior when decreasing T from a random configuration
at T � 1 and when increasing T from an ordered state
at T � 0; see Fig. 1a. Transverse superconductivity
can be measured when a small current Itr is applied
perpendicular to the driving current: we find a vanishingly
small transverse voltage Vtr below TU�1��I�, as we found
before in [7] for f � 1�25. We obtain the voltage in
the m direction as the time average Vm � �dam�t��dt�
(normalized by RNI0); longitudinal voltage is V � Vy

and transverse voltage is Vtr � Vx . In Fig. 1b we see
that the transverse resistance Vtr�Itr is negligibly small
for T , TU�1� and starts to rise near the transition. The
equilibrium U(1) transition (at f � 0, I � 0, Kosterlitz-
Thouless) is characterized by the unbinding of vortex-
antivortex pairs above Tc. We calculate the density
nya of vortex-antivortex excitations above checkerboard
vortex configuration as 2nya � �jb�ñ�j� 2 f, where the
vorticity at the plaquette ñ (associated with the site n) is
b�ñ� � 2Dm 3 nint�um�n��2p�. We see in Fig. 1c that
nya rises near TU�1�. Moreover, the transverse resistivity
above TU�1� is Vtr�Itr ~ nya.

Z2 symmetry.—Since the ground state is a checker-
board pattern of vortices, we define the “staggered magne-
tization” as ms�ñ, t� � �21�nx1ny �2b�nx, ny, t� 2 1� and
ms�t� � �1�L2�

P
ñ ms�ñ, t�. At T � 0, I � 0 there are

two degenerate configurations with ms � 61. Above the
T � 0 critical current Ic0 the checkerboard state moves as
a rigid structure and ms�t� changes sign periodically with
time. Therefore we define the chiral order parameter as
x � �m2

s�t��. We start the simulation at T � 0 with an
ordered checkerboard state driven by a current I . Ic0,
and then we increase slowly the temperature. We obtain
that the chirality parameter vanishes at a temperature TZ2 ,
which is smaller than TU�1�, as can be seen in Fig. 2a for
I � 0.9. This transition is confirmed by the size analysis
shown in the inset of Fig. 2a: for T , TZ2 the chirality
x is independent of size, while for T . TZ2

we find that
x � 1�L2. As it is shown in Fig. 2b, the longitudinal volt-
age V has a sharp increase at TZ2 , which could be easily de-
tected experimentally. The excitations that characterize the
Z2 transition are domain walls that separate domains with
different signs of ms. The length of domain walls in the
direction m is given by Lm � �2�L2�

P
ñ�b�ñ�b�ñ 1 n��,

with n�m. We find that for I . 0 and T . 0 the do-
mains are anisotropic: the domain walls are longer in the
direction perpendicular to the current �Lx . Ly� and the
domain anisotropy Lx�Ly increases with I. In Fig. 2c we
show the dependence of Lm with temperature for I � 0.9.
At T � 0 there are no domain walls, since the initial con-
dition is the checkerboard state, and the domain wall length
grows with T , showing a sharp increase at TZ2 . The domain
anisotropy Lx�Ly is shown in the inset of Fig. 2c: it has
a clear jump at the transition in TZ2

while for T ¿ TZ2

the domains tend to be less anisotropic. When decreas-
ing temperature from a random configuration at T � 1, an
important number of domain walls along the x direction
017004-2
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FIG. 2. Breaking of the Z2 symmetry for a large current:
I � 0.9, I . Ic�0�, system size 128 3 128, results for increas-
ing T (≤) and decreasing T �}�. (a) Chiral order parameter x
vs T and one-dimensional order parameter xx vs T . Inset: size
effect for x for L � 8, 16, 32, 48, 64, and 128. (b) Longitudinal
voltage V vs T . Insets: snapshots of the staggered magnetization
ms�n, t�: ordered state for T � 0.035 (warming up), high tem-
perature disordered state, T � 0.15, and low temperature state
with Lx-domain walls, T � 0.0025 (cooling down). (c) Do-
main wall lengths Lx and Ly vs T . Inset: Domain anisotropy
Lx �Ly vs T .

remain frozen below TZ2
: Lx tends to a finite value when

T ! 0 and the domain anisotropy tends to diverge when
cooling down. This leads to a strong hysteresis in the volt-
age V at TZ2 (see Fig. 2b) since the extra domain walls in-
crease dissipation [11,20]. This low T state with frozen-in
domain walls is ordered along the x direction (i.e., perpen-
dicular to I) but is disordered along the y direction which
gives x � 0. We define the Z2 order parameter in the x di-
rection as xx � ��1�L�

P
ny

��1�L�
P

nx
ms�nx , ny , t��2� and

xy is defined analogously. We see in Fig. 2a that, when
cooling down from high T , xx vanishes as xx � 1�L for
T . TZ2

(it has stronger size effects than x) and becomes
finite for T , TZ2 , while xy � 0 for any T . Therefore, de-
pending on the history, there are two kinds of high current
steady states with broken Z2 symmetry at low T , examples
of which are shown in the inset of Fig. 2b. One state has
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mostly the checkerboard structure �x fi 0� with few very
anisotropic domains. It can be obtained experimentally by
cooling down at zero drive and then increasing I. The
other steady state is ordered in the direction perpendicular
to I, xx fi 0 and xy � 0, with several domain walls along
the x direction. These domain walls move in the direction
parallel to I (via the motion of vortices perpendicular to I)
giving an additional dissipation. This state can be obtained
experimentally by cooling down with a fixed I.

The two steady states have also different critical currents
as can be observed in the low T current-voltage �IV � char-
acteristics. In Fig. 3a we show the IV curve for T � 0.02
and in Fig. 3b the corresponding x vs I curve. When
increasing I from the I � 0 equilibrium state, we find a
critical current Ic2�T�, which in the limit of T � 0 tends
to Ic0 �

p
2 2 1 as found analytically and in simulations

with pbc [8,21,22]. Near Ic2 the order parameter x has a
minimum and rapidly increases with I. The driven state is
an ordered state similar to the one shown in Fig. 2b. At a
higher current IZ2

there is a sharp drop of x which corre-
sponds to the crossing of the TZ2 �I� line (see Fig. 4) and
the Z2 order is lost. If we now decrease the current either
from the disordered state at I . IZ2 or from a random ini-
tial configuration or from a configuration cooled down at
a fixed I . Ic2, we obtain the steady state with domain
walls along the x direction and x � 0, xx fi 0. This state
has a higher voltage and pins at a lower critical current
Ic1�T �, which has the T � 0 limit Ic1�T ! 0� � 0.35. It
has been shown recently [22] that open boundary condi-
tions can nucleate domain walls leading to the critical cur-
rent Ic1�0� � 0.35 usually found in open boundary T � 0
simulations [11,18,20]. Also a moving state with parallel

FIG. 3. Current-voltage hysteresis for T � 0.02 shown for
(a) voltage vs I and (b) chiral order parameter vs I . Increasing
current from the checkerboard state (≤) and decreasing current
from a random state at large I . IZ2 (}).
017004-3
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FIG. 4. Current-temperature phase diagram. TU�1��I� line ob-
tained from Yx�T � and Vtr�T� (�). TZ2 �I� line obtained from
x�T �, V�T �, and Lx�Ly�T � (≤). Ic1�T � (}) and Ic2�T � (≤) are
obtained from hysteresis in IV curves as well as from hysteresis
in Yx�T � and x�T � curves. The dashed line corresponds to the
IV curve of Fig. 3 (T � 0.02).

domain walls (as in the inset of Fig. 3b) has been found
by Grønbech-Jensen et al. [23] in f � 1�2 JJA with open
boundaries, and Marino and Halsey [24] have shown that
the high current states of frustrated JJA can have moving
domain walls. We have studied the effect of open bound-
aries in the direction of I, in the direction perpendicular to
I, and in both directions. They differ mainly in the T � 0
critical current and IV curve; for finite T there are small
differences in the detailed shape of the hysteresis in critical
current. In all the cases the two high current steady states
are observed at finite T with the same history dependence.
Also, we find that the density of frozen Lx domain walls
depends on cooling rate and decreases with system size.

Finally, we obtain the current-temperature phase dia-
gram, which is shown in Fig. 4. At high currents we
find TZ2 , TU�1�, which is in contrast with the equilib-
rium result of TZ2 * TU�1� [8,12–16]. Interestingly, the
frustrated XY model with modulated anisotropic couplings
also has TZ2 , TU�1� [9], meaning that the anisotropy in-
duced by the current may provide a similar effect. It is
clear that the f � 1�2 case has a strong pinning effect
(with Ic0 � 0.414) when compared to the dilute case of
f � 1�25 (with Ic0 � 0.11). In fact, the transverse de-
pinning temperature TU�1� is 1 order of magnitude higher
for f � 1�2 with respect to f � 1�25 [7]. The driving
current weakens the effect of pinning [1] and thus TU�1�
increases with I. A similar effect gives a TZ2 growing
with I just above Ic0. However, for larger currents (near
the Josephson current I0) TZ2�I� starts to decrease with I,
with the limit TZ2�I ! `� ! 0. This is because a driving
current increases the density of domain walls (an effect
already mentioned in [11]) destroying the Ising order for
017004-4
I ¿ Ic0. Moreover, we find that the ordered region in
T , TZ2�I� has bistability with two possible steady states
and history dependent IV curves.
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