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Dewetting: Film Rupture by Nucleation in the Spinodal Regime
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Unstable thin liquid films on solid substrates dewet by hole nucleation on defects or by a linear
surface instability (spinodal dewetting). A system with destabilizing short-range and stabilizing long-
range molecular interactions is investigated. We show that, for a subrange within the linearly unstable
film thickness range, nucleation determines the final structure, whereas spinodal dewetting is of negligible
influence. The results are also applicable to the spinodal decomposition of binary mixtures.
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The stability properties of thin liquid films on solid sub-
strates are of technological importance in applications such
as coating or drying processes. Film rupture can arise from
surface tension stresses caused by temperature or surfac-
tant concentration gradients and molecular interactions be-
tween the substrate and the film [1]. The latter may lead
to dewetting for film thicknesses below 100 nm. Its study
helps to develop methods to stabilize thin films [2] or to
break thin films in a controlled manner [3]. Dewetting pro-
ceeds by the formation of holes, which subsequently grow
laterally, resulting in polygonal networks of liquid rims or
sets of liquid drops [4,5]. Investigations have focused on
all aspects of the process: the rupture of the film [2,6], the
growth process of single holes [7], the final overall pattern
[5], and fingering instabilities during hole growth [8].

Film rupture proceeds by surface instability and hole nu-
cleation on defects occurring in the ranges of linearly un-
stable and metastable film thicknesses, respectively [2,5,9].
Different methods have been employed to analyze the final
pattern to identify the specific acting rupture mechanism.
On the one hand, the agreement of the dependence of hole
density on film thickness and the theoretical relation be-
tween the wavelength of the fastest growing linear mode
and film thickness point towards dewetting by instability
[5]. On the other hand, the order of arrangements of holes
was measured to distinguish ordered (instability) and dis-
ordered (nucleation) patterns [9].

We think that part of the ambiguity of the results is
caused by the prevailing belief that dewetting by insta-
bility dominates in the linearly unstable film thickness
range, and hole nucleation at defects dominates outside this
range. But we show here that, within the linearly unstable
range, one has to distinguish instability-dominated and nu-
cleation-dominated subranges.

The description of dewetting takes advantage of the dis-
parity of length scales between film thickness and lat-
eral changes in the film profile, allowing one to apply the
long-wave approximation to the Stokes equations [1]. The
0031-9007�01�87(1)�016104(4)$15.00
resulting nonlinear evolution equation for the film thick-
ness has the same functional form as the Cahn-Hillard
equation describing the spinodal decomposition of a bi-
nary mixture [10]. Therefore dewetting by instability
is also called “spinodal dewetting” [11]. The evolution
equation reads

≠th � 2≠x�Q�h�≠x �g≠xxh 1 P�h��� , (1)

where h�x, t� is the film thickness, g is the surface tension,
Q�h� � h3�3h is the mobility factor due to Poiseuille
flow, and h is the dynamic shear viscosity. The molec-
ular forces are included through an additional pressure
term, the disjoining pressure, P�h� � 2≠hf�h�, where
f�h� is a free energy. Here we use a combination of po-
lar short-range destabilizing and apolar (Lifshitz –Van der
Waals) long-range stabilizing interactions that is widely
used in the literature [12]

P�h� � 2Sap
d2

0

h3
1

Sp

l
e�d02h��l. (2)

d0 � 0.158 nm is the Born repulsion length and l is
the correlation length of a polar fluid [13]. SP , 0 and
SAP . 0 are the polar and apolar components of the total
spreading coefficient, S � SAP 1 SP . However, the re-
sults are also qualitatively valid for other formally similar
disjoining pressures and for spinodal decomposition [14].
Introducing the parameters k � �jSpj�l� exp�d0�l� and
b � �2Sapd2

0�jSp jl2� exp�2d0�l� and using new scales
t � �3hg�k2l�t̃ for time, h � lh̃ for film thickness,
and x �

p
lg�k x̃ for the lateral coordinate, we obtain,

after dropping the tildes, the dimensionless film evolution
equation:

≠th � 2≠x�h3≠x�≠xxh 2 ≠hf�h��� , (3)

with

f�h� �
b

2h2 2 e2h. (4)
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To assign an energy to every film profile h�x, t�, one uses
the Lyapunov functional [14]

F�h� �
Z ∑

1
2

�≠xh�2 1 f�h� 2 C1�h 2 h �
∏

dx , (5)

where h is the mean thickness and C1 is the Lagrange
multiplier corresponding to mass conservation. Minimiz-
ing the functional gives the equation describing stationary
solutions,

0 � ≠xxh�x� 2 ≠hf�h� 1 C1 . (6)

It is also obtained by integrating Eq. (3) with ≠th � 0.
The choice C1 � ≠hfjh0 ensures that the flat film h�x� �
h0 is a solution of Eq. (6). For localized solutions, h0 is
the thickness at infinity, whereas for periodic solutions, h0

is the thickness at the inflection point of the profiles.
Before solving Eq. (6) and discussing stationary solu-

tions of Eq. (3) let us first examine the linear stability of
the flat film. It is obtained by linearizing Eq. (3) with the
ansatz h�x� � h0 1 e exp�bt 1 ikx�. The growth rate,
b, for perturbations of wave number, k, is

b � 2h3
0k2�k2 1 ≠hhfjh0� . (7)

The film is unstable for b . 0, i.e., for ≠hhfjh0 , 0
giving the unstable thickness range hd

i , h0 , hu
i . At

bc � 256�3e4 � 1.56 and hc � 4 we find a critical point,
i.e., for b . bc the films are always linearly stable. At
b � 0 no upper instability limit exists and the lower limit
scales as hd

i � �3b�1�4. The smallest unstable wavelength
for a given h0 is

lc � 2p�2≠hhfjh0�
21�2, (8)

whereas the fastest growing mode has the wavelength
lm �

p
2 lc with growth rate bm � h3

0�≠hhfjh0�2�4.
However, the absolute stability of a linearly stable film

remains to be determined because it may be unstable to
finite perturbations. To discuss this issue we assume an
infinitely long film of thickness h0 and give a small part of
it (finite length L) the thickness h, hence ensuring that the
mean film thickness remains h0. The width of the transi-
tion region between the two levels is small compared to L,
allowing one to neglect the gradient part of the energy (5).
The energy per length of the disturbed part g�h� � f�h� 2

C1�h0�h is shown in Fig. 1. We obtain (a) a single-well
and (b) a generally asymmetric, double-well potential for
b , 8�e2 and bc . b . 8�e2 � 1.08, respectively. Min-
ima represent linearly stable thicknesses, whereas only the
deepest minimum represents an absolutely stable film. The
other minimum is metastable. The maximum represents
the linearly unstable film. For every b the metastable thick-
ness range is limited by the h0 allowing for two minima
of equal depth. For b . 8�e2 there exists an upper and a
lower limit, denoted by hu

m and hd
m and characterized by

≠hfjhu
m

� ≠hfjhd
m

and g�hu
m� � g�hd

m�. Note, hu
m and hd

m
are also the equilibrium film thicknesses resulting from
film decomposition after infinite time [11]. If b , 8�e2

no upper limit of the metastable range exists and the lower
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FIG. 1. The energy g for (a) b � 0.5 and (b) b � 1.4 and
different film thicknesses, h0. The respective dashed lines are
for the h0, giving the outer border of the metastable range.

limit is given by ≠hf jhd
m

� 0, securing g�h ! `� � 0. For
b ! 0 the lower limit approaches zero as hd

m � b1�3. Lin-
early unstable and metastable thickness ranges are shown
below in Fig. 4.

Now we analyze the periodic solutions of Eq. (6) fol-
lowing [14]. By studying their energy and amplitude as
a function of period for different fixed h, we distinguish
three different regimes (Fig. 2).

(i) The flat film is linearly unstable. One branch of pe-
riodic solutions exists, continuing towards infinite period.
The energy, always lower than for the flat film, decreases
and the amplitude increases monotonically with increasing
period. The solutions are stable to disturbances of their pe-
riod but unstable to coarse graining [14].

(ii) The flat film is linearly unstable. Two branches
of periodic solutions exist, the low-energy branch with
properties as (i) and the high-energy branch ending at the
smallest unstable wavelength for the flat film, lc [Eq. (8)].
The latter branch has higher energy than the flat film and
represents nucleation solutions as was confirmed by direct
integration of Eq. (3) with different initial disturbances.
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FIG. 2. Details of branches of periodic solutions for mean film
thicknesses, h, as shown in the insets at fixed b � 0.5. Shown
are (left) energy-period and (right) amplitude-period dependen-
cies. The energies are relative to the respective flat film energies.
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FIG. 3. Dependence of the linear growth rate of disturbances,
b, on the period for nucleation solutions (solid lines) and on
the wavelength for flat film solutions (dashed lines) for different
values of h with b � 0.5.

If the disturbance amplitude is smaller than the ampli-
tude of the respective nucleation solution the film flattens,
whereas the disturbance grows if its amplitude is larger.
The amplitude of the nucleation solutions increases with
decreasing period.

(iii) The flat film is metastable. Two branches of peri-
odic solutions exist. The low-energy branch has properties
as (i) and the high-energy branch represents nucleation so-
lutions of different periods as in (ii), but continues towards
infinite period. The infinite period solution is a single criti-
cal hole, as found in wetting transitions [15].

The occurrence of nucleation solutions in (ii) implies
that the distinction between instability range and nuclea-
tion range of the film thickness generally used in the litera-
ture has to be modified to accommodate three rather than
two ranges: �i� instability range, �ii� range of mixed be-
havior, and �iii� nucleation range. To determine what will
actually happen during the rupture process in the range of
mixed behavior we perform a linear stability analysis on
the nucleation solutions in �ii�, h0�x�, taking the ansatz
h�x� � h0�x� 1 eh1�x�ebt [14].
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FIG. 4. The rupture regimes are shown within the parameter
plane �b, h �. A and B denote, respectively, the nucleation-
dominated and instability-dominated subranges within the
linearly unstable thickness range (to the left of the solid line).
They are separated by the dot-dashed line. The dotted line is
the border between (i) the instability range and (ii) the range of
mixed behavior. The star denotes the lower metastable range.
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In Fig. 3 we compare the respective linear growth rates,
b, of disturbances to the nucleation solutions and to the
flat film [the latter obtained with Eq. (7)]. Depending
on the mean film thickness, the maximal growth rate for
the nucleation solutions can be much higher [Fig. 3(a)] or
much lower [Fig. 3(c)] than for flat films, thus implying the
physical importance of nucleation solutions down to small
amplitude if the situation of Fig. 3(a) is given.

Taking this result as a hint of the local structure of the
flow, ≠th, leads us to the assumption that there exists a
nucleation-dominated subrange in the linearly unstable
film thickness range, where local finite disturbances
of a lateral extension comparable to the period of the
above nucleation solutions have a crucial influence on
the structure formation. However, they play a negligible
role in the remaining instability-dominated subrange. We
use the linear stability results to mark a border between
nucleation-dominated and instability-dominated behavior
at the film thickness, where both maximal growth rates are
equal, as shown in Fig. 3(b). The numerically calculated
values are represented by the dot-dashed line in Fig. 4.

To substantiate our assumption we integrate the evolu-
tion equation (3) for a system of size L � nlm, where
n . 1 is an integer, taking as an initial condition a
flat film with a localized disturbance, hinit � h �1 2

d cosh22�x�wlm�� of maximum depth, d, and width, w,
in terms of the wavelength of the fastest flat film mode,
lm. Calculating the time evolution for many different
initial disturbances yields a clear qualitative distinction
between the two subranges, as shown in Fig. 5.

(A) Nucleation dominated.—The disturbance grows,
forming a hole with rims at its sides. This hole then
expands laterally. Eventually, the thickness depressions at
the outer base of the rims lead to secondary nucleation
events [Fig. 5(a)]. The final, short-time structure (before
coarse graining sets in) is a set of holes with distances not
correlated with lm [last image of Fig. 5(a)]. However,
it depends strongly on the initial disturbance, as can be
seen in the evolution of the spatially averaged energy
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FIG. 5. Drastic difference in the short-time evolution of a lo-
calized disturbance between (a) nucleation-dominated subrange
at h � 5.0 and (b) instability-dominated subrange at h � 3.1;
both flat film thicknesses are linearly unstable. Parameter values:
b � 0.5, d � 0.2, and w � 0.2. The insets show the corre-
sponding times in units tm � 1�bm .
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FIG. 6. Fourier transforms of the final short-time patterns at
t�tm � 17.0 for (a) h � 5.0 and for (c) h � 3.1. Average en-
ergy relative to the flat film for the short-time evolution for
(b) h � 5.0 and (d) h � 3.1. The thin horizontal lines represent
the energy for stationary solutions of periods (b) lm, 16lm�11,
16lm�10, 16lm�9, 16lm�8 (from above) and (d) lm . Shown are
the results for eight different initial disturbances (d � 0.1 0.3,
w � 0.1 0.4) at b � 0.5.

[Fig. 6(b)] and the Fourier spectrum of the final short-time
structure [Fig. 6(a)] for different initial disturbances. We
note that the energy even differs in its final short-
time value.

(B) Instability dominated.—The disturbance starts to
grow as in (A) but causes from the very beginning the
growth of undulations on its two sides. These growing un-
dulations have a period corresponding to the wavelength
of the most unstable flat film mode and expand laterally
[Fig. 5(b)]. The final short-time structure is a nearly pe-
riodic set of holes independent of the details of the ini-
tial disturbance, as shown in the Fourier spectra of a set
of final structures in Fig. 6(c). The evolution of the en-
ergy [Fig. 6(d)] shows that only the very early phase of the
process depends on the initial disturbance. Consequently,
the evolution is nearly identical, only slightly shifted in
time. In contrast to case (A), all final short-time structures
have equal energy corresponding to the energy of the low-
energy stationary solution of period lm.

We have analyzed the evolution of a thin liquid film
under the influence of antagonistic long- and short-range
interactions by determining the stable, metastable, and
linearly unstable thickness ranges for flat films. We have
found the branches of stationary solutions and have studied
their linear stability. Thus, we have shown that the linearly
unstable film thickness range comprises nucleation-
dominated and instability-dominated subranges whose
difference in time evolution has been seen by numerically
integrating the evolution equation. In the nucleation-
dominated subrange, initial finite disturbances are crucial
for the final short-time structure, whereas the flat film
modes are too slow to come into play. However, in
016104-4
the instability-dominated subrange the fastest growing
flat film mode dominates while finite disturbances have
negligible influence. These results hopefully help further
understanding of the available experimental results [5,9].
Finally, we point out that by replacing the film thick-
ness with concentration our findings can be transferred
verbatim to spinodal decomposition and can be used to
extend existing results on solution types and the transition
between spinodal and nucleation dynamics in spinodal
decomposition [16].
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