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Introducing a short time delay into the coupling of two synchronizing chaotic systems, it was shown
recently that the driven system may anticipate the driving system in real time. Augmenting the phase
space of the driven system, we accomplish anticipation times that are multiples of the coupling delay
time and exceed characteristic time scales of the chaotic dynamics. The stability properties of the asso-
ciated anticipatory synchronization manifold in certain cases turn out to be the same as for identically

synchronizing oscillators.
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Since the discovery of chaotic dynamics in continuous
nonlinear dissipative systems some decades ago [1] this
phenomenon has attracted an enormous research activity in
different areas of science. On the one hand, it was found
that seemingly simple deterministic systems can exhibit
rather complex solutions, but on the other hand, coupled
chaotic systems may exhibit ordered collective behavior
by the emergence of synchronization between them [2]. In
this case the time evolution becomes restricted to a dynam-
ically invariant subspace of the chaotic phase space, the
synchronization manifold. In other words, some degrees
of freedom of the joint system are eliminated, leading to a
reduction of complexity. Furthermore, since the availabil-
ity of methods for chaos control [3], deterministic chaos
has lost even more of its unpredictability.

Recently, by introducing bitemporal synchronization
manifolds which comprise two different time points,
for unidirectionally coupled systems the synchronization
behavior was generalized in the following sense: The
driving system’s state is replicated not instantaneously but
anticipated by the driven system [4,5], without affecting
the driving system again. This phenomenon causes an
elimination of degrees of freedom in cases that have
not been considered yet and may be highly desirable
in technical applications. For example, it was already
reproduced in realistic numerical simulations of coupled
chaotic semiconductor lasers [6]. However, for chaotic
systems without an intrinsic time delay, the maximum
stably attainable anticipation time turned out to be much
shorter than the characteristic time scales of the system’s
dynamics.

In this Letter we show that stability can be enhanced
considerably by using chains of oscillators. As a result,
we accomplish anticipation times larger than characteris-
tic time scales of the system’s dynamics, thus introducing
a novel way of reducing unpredictability of chaotic dynam-
ics. The outline of this Letter is as follows: After briefly
reviewing the phenomena of identical and anticipating syn-
chronization, we introduce oscillator chains to augment the
phase space. This leads to a considerable increment of
the maximum attainable anticipation time. Then we show
that in certain cases these chains have exactly the same
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stability properties as chains of identically synchronizing
oscillators, a result important in view of disturbed or non-
identical systems.

We start with the well known phenomenon of identical
chaotic synchronization: Consider a dynamical system
given by the vector field

x = f(x) [x € R"], (1)

which is coupled to an identical system with state vector
y via

y=f£(y) + k(x -y [y € R"]. (2)

The transversal system with the state variable A := x —
y then evolves as

A =1f(x) - f(y) — k(A). 3)
Often, the coupling is considered to be linear; i.e., k(A)
becomes an n X n matrix that is multiplied with the
transversal state. In the following, we do not notationally
distinguish the function and matrix k. In any case, it is
assumed that k(0) = 0. If k is linear and f is a polyno-
mial up to second order, the then linear nonautonomous
transversal system is

A =[g(x,y) — k]A, Q)
with g an n X n matrix depending linearly on x and
y. If the fixed point A = 0 is globally asymptotically
stable, i.e., lim,—||A(z)|| = O for any initial condition
A(0), the two systems will exhibit synchronous behavior
after some transient time [7]. Then the dynamics is re-
stricted to the subspace x = y which is usually called the
synchronization manifold [8] of the coupled systems. On
this manifold, the coupling term vanishes, and the driv-
ing system (1) and driven system (2) become identical.
There are several examples for chaotic systems in which
identical synchronization was observed, like the Rossler
[9] and Lorenz [1] oscillators. Figures 1(a) and 1(b) de-
pict the approach to the synchronization manifold for two
coupled Rossler oscillators, where the driven oscillator is
given by y; = —y; — y3 + k(x; — y1), y2 = y1 + aya,
and y3 = b + y3(y; — ¢). With this scalar coupling the
transversal system has the form of Eq. (4) [4].
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FIG. 1. (a) Numerically simulated time series x;(¢) (bold line)
and y;(¢) for two coupled Rossler oscillators and (b) their ap-
proach to the manifold x = y. The coupling strength k = 0.8
is used. (c) The same for anticipatory coupling with 7 = 0.6,
i.e., the coupling term 0.8(x; — yi, 7) is used in Eq. (5). The
driven system’s trajectory is shifted 0.6 time units to the left,
thus anticipating the chaotic driver. This is also seen in the ap-
proach to the anticipatory synchronization manifold x =y, (d).
(In all simulations the parameters of the Rossler oscillators are
a = 0.15, b = 0.2, and ¢ = 10. The other components of the
two synchronization manifolds do not qualitatively differ from
the shown first components.)

To construct a system that anticipates the dynamics of
Eq. (1), atime delay 7 = 0 is introduced by modifying the
coupling term in Eq. (2) to k(x — y;), wherey, := y(r —
7). This so introduced “memory” yields the system

y =f(y) + k(x — y,). (5)

Note that the driving system is not affected and only past
values of the driven system are needed. This concept al-
lows for the definition of a bitemporal anticipatory syn-
chronization manifold

X:yT? (6)

on which the state of the driven system, y, anticipates the
driving system’s state x. This is easily seen by a time shift
in Eq. (6) to yield x(¢ + 7) = y(¢). If now the transversal
system state is defined accordingly as A(” := x — y,, for
its time evolution one finds immediately

AT = g(x,y)A™ — KA, )

where again A" := A(r — 7). Obviously, for any time
delay 7, A = 0 is a fixed point of this system, and,
therefore, the anticipatory synchronization manifold (6)
exists.

As an example, we use anticipatory coupling of two
coupled Rossler oscillators again. The transversal system
becomes
) 0 -1 -1 kK 0 0
AO =1 a4 0 |AP [0 0 0|AY.

X3 0 Yir c 0 0 O ( 8)
The approach of the trajectories to the now anticipa-
tory synchronization manifold is depicted in Figs. 1(c)
and 1(d).

Whereas the existence of the anticipatory manifold x =
y- could easily be proved for arbitrary 7, the particular
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value for 7 for which stability of this manifold breaks down
is much harder to find. Even in the case of identical syn-
chronization, stability has to be examined using numeri-
cal simulations, for example, by checking the transversal
Lyapunov exponents [8,10] for negativity [11] (unless a
Lyapunov function for the transversal system can be found
[12,13]). Therefore, we argue only for the existence of a
small 7 for which the manifold x = y; is linearly stable:
Formally, the stability of the fixed point A(” = 0 is deter-
mined by the (time-dependent) roots of the characteristic
equation [14] of Eq. (7),

det{AI — [g(x,y,) — ke *"]} = 0. ©)

For stability of identical synchronization (7 = 0), con-
trary to ordinary differential equations with constant
coefficients, it may not be necessary that all roots are
located in the open left half complex plane for all possible
values of (x,y). This would be far too conservative a
condition for stability, and it is violated clearly in the
examples considered here. (For these reasons it was pro-
posed in Ref. [15] to consider the averaged eigenvalues of
the Jacobian along a driving system’s trajectory as a suffi-
cient condition for synchronization.) For 7 > 0, this now
transcendental equation may have a completely different
spectrum of eigenvalues, but for a sufficiently small 7 it
can be assumed quite generally that the roots are disturbed
only weakly and still can be considered good approxima-
tions of the roots with 7 = 0. For these reasons, we make
the following conjecture: If A = 0 is a stable fixed point
of Eq. (4), for most systems there exists a 7o > 0 such that
for all 7 < 79 A” = 0 remains to be a stable fixed point
of Eq. (7). This conjecture is backed up by numerical
simulations [4]; in case of coupled Rossler systems, nu-
merical computations of the largest transversal Lyapunov
exponent reveal that it remains negative in a broad area
of the (k, 7)-parameter space.

To increase the maximum possible anticipation time 7,
we augment the phase space in the following way: If for
T = 7 the anticipatory synchronization manifold of sys-
tem (5) is stable, to yield a manifold with 7 = m7y (m =
2,3,...), we define a chain of m systems each with state
vector y; € IR”. Defining the augmented state vector as
Y := (y{,....yL)" € R™, the complete driven system
becomes

Y =F(Y) + KX - Y,,), (10)

with X :== x".y{.....yh )7, F:= (F{,....,FI)T, F;:
y; — f(y;) (i = 1,...,m), analogous with K. In the case
of synchronization of systems (1) and (5), we note that
Y., = X holds. Therefore Al =x — Y2.2r, €volves
as

A(ZTO) = yl,’To - y2,27'0?
= 8(Y1iry Y220 ) AP — KAZ™),

This is the same transversal system as Eq. (7), which has a
stable fixed point A(™ = 0 by assumption. Therefore, if
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Ty is the transient time needed to sufficiently approach the
anticipatory synchronization manifold x = y; ., [which
is only a part of the manifold of the augmented system
(1,10)], latest after the time m7T the last oscillator in the
chain will anticipate the driving system with a time m7,
and the anticipatory synchronization manifold X =y, nr,
will be approached. Choosing m appropriately, in prin-
ciple, the total anticipation time can be made arbitrarily
large.

In practice, although the first part of the augmented
system’s manifold, x =y, ,, may be guaranteed to be
stable, the second and subsequent oscillators can happen
to become linearly unstable as long as the system is in a
transient motion; the arguments of g in Eq. (11) may attain
values outside the range of the arguments of g in Eq. (4)
unless the first two oscillators are synchronized. To prevent
trajectories to escape to infinity, one can start with only one
coupled oscillator and append the next one after time T,
etc. Here we use an alternative approach: The coupling
between the ith and (i + 1)st oscillator is loosened if the
distance between the corresponding states becomes too

(7o)
large by using K;(X; — Yi ;) = k(A(,-TO) exp[—%]) in
Eq. (10), where the parameter w determines the strength
of this correction. (The lower index of A here denotes the
number of the subsystem.)

Numerical simulations for the Rdossler and Lorenz os-
cillators with m = 12 (Fig. 2) reveal that the anticipation
time can indeed exceed typical time scales of the chaotic
oscillations. For much longer runs than shown in Fig. 2,
no breakdown of synchronization is observed.

In practical applications where it may not be possible to
construct identical copies of the system to be synchronized,
the stability of oscillator chains should crucially depend on
the system discrepancies. Identical synchronization must

FIG. 2. Numerically simulated time series x; (¢) (bold line) and
Yma(t) with m = 12 for the Rossler (a) and Lorenz (b) os-
cillators, respectively, coupled to the augmented system (10).
The resulting anticipation times are 7 = 12 X 0.6 = 7.2 and
7 = 12 X 0.075 = 0.9, respectively, exceeding the typical time
scales of the chaotic oscillations. [For the Rossler systems the
coupling matrix k = diag(0.8, 0, 0) is used; for the Lorenz sys-
tems it is k = diag(5, 5,5) [21]. The parameters of the Rossler
equations are the same as in Fig. 1; the Lorenz system parame-
ters are ¢ = 10, r = 28, and b = 8/3. In both cases, w = 10
is used, and transients are removed.]
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break down already for slightly nonidentical systems. In
this case, the concept of synchronization still may be use-
ful in an approximate sense, namely, if the trajectories stay
close together all the time for small system discrepancies.
In this sense, at first sight it may seem that in the anticipa-
tory coupling case the synchronization manifold is much
more unstable than in the same chain with conventional
coupling. Using coupled maps, we now give a heuristic
proof that this intuition can be misleading. The general
form considered here is

(1 (1 @ @ M

1)
X1 = ax; + flx2), x5 =ax” + flx 7)),
N N N—1
= axt” + ") (al < ). (12)

(Upper indices here denote the number of the chain ele-
ment.) Here we use complete replacement coupling, with
T = 1 for identical synchronization and 7 = 0 for the an-
ticipatory case. The oscillator at site i is influenced only by
itself and by its left neighbor at site i — 1 (1 < i =< N).
In this case of one-dimensional oscillators even global
stability results can be derived quite easily [5]. Now
we observe the following: Switching from 7 =1 to
T = 0, the stability of the whole system is not affected,
since in each row of Eq. (12) just the time when the
coupling sets in is changed. Therefore, the anticipatory
chain is as stable as the chain with identical synchro-
nization, independent of the kind of disturbances imposed
onto the systems. Note that the anticipatory complete
replacement coupling used in Eq. (12) locally is merely
a special case of anticipatory dissipative coupling. To
see this, rewrite the ith row as xfle = axfl) + f(x,l_)l) +
K[f(th_l)) - f(xfl_)l)] (1 <i=N,K = 1), expand the
coupling term with respect to small state differences and
neglect quadratic and higher order terms. Therefore, the
conclusion of identical stability properties for the antici-
patory and identical synchronization case derived above
also may hold locally for this kind of dissipative coupling.

There are crucial differences between identical syn-
chronization in chains of coupled oscillators and synchro-
nization on anticipatory manifolds, which deserve further
discussion: (i) A signal can travel against the coupling
direction. This in practice causes seemingly noncausal
behavior, if the deviations from the manifold are so
small that they cannot be resolved by measurements
anymore. This becomes even more apparent for coupled
delayed-feedback systems and coupled map lattices where
for certain cases the approach to the anticipatory synchro-
nization manifold can be calculated analytically [4]. For
a pair of coupled oscillators, this was recently observed
in an electronic circuit [16]. (ii) In technical applications,
one would couple an identical system directly to another
nonlinear (not necessarily chaotic) system. In contrast to
forecasting trajectories by numerical modeling, this way
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forecasting would be possible without any computations
necessary. This could be of advantage in fast devices
as part of communication systems [17]. (iii)) A time lag
between the trajectories of coupled systems also can be
observed in the phenomenon of lag synchronization [18],
where two nonidentical systems, usually coupled in a
bidirectional manner, approach an approximate bitemporal
manifold. Using unidirectional coupling, it is also possi-
ble to yield an approximate anticipatory synchronization
manifold, but without any memory term involved in the
coupling. Since the systems have to be nonidentical, it
cannot be expected that the associated augmented system
will synchronize in all cases, however. (iv) It can be
expected that the maximum anticipation time can be
increased using optimized coupling schemes [19].

To summarize, we have shown that the stability of
anticipating synchronization can greatly be enhanced by
augmenting the phase space of the driven system. This
allows for anticipation times that are multiples of the ones
that have been accomplished so far using only pairs of
synchronizing systems. In particular, it has been shown
that the anticipation time may exceed typical time scales
of the chaotic dynamics. For the special case of coupled
maps with memory, it was shown that the stability of
the anticipatory synchronization manifold is the same
as that for identical synchronization. This implies that
chains of disturbed or slightly nonidentical systems do not
behave worse for the anticipatory case, as compared with
conventionally coupled chains. Since it is not required that
the oscillators are chaotic, we believe that these results
pave the way towards real applications. We think it may
be worthwhile to look whether nature makes use of these
phenomena, e.g., in neuronal information processing.
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Planck-Gesellschaft.
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