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We describe a new approach to computing energy levels of a nonrelativistic bound state of two con-
stituents with masses M and m, by a systematic expansion in powers of m�M . After discussing the
method, we demonstrate its potential with an example of the radiative recoil corrections to the Lamb
shift and hyperfine splitting relevant for the hydrogen, muonic hydrogen, and muonium. A discrepancy
between two previous calculations of O ���a�Za�5m2�M��� radiative recoil corrections to the Lamb shift is
resolved and several new terms of O ���a�Za�5m4�M3��� and higher are obtained.
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The theory of nonrelativistic bound states in QED re-
mains an important source of information about fundamen-
tal physical parameters, such as the fine structure constant
and the masses of the electron, muon, and proton, among
many others [1]. Simple atoms, which are being studied in
laboratories, differ significantly in the ratios of their con-
stituent masses. Two situations can be distinguished. The
first one is the case when the masses of the two constituents
of the bound state are equal, with the positronium as the
most important example. The second case is a bound state
with two very different masses, e.g., hydrogen, muonium,
muonic hydrogen. Both situations represent two special
limits of a general mass ratio case. In both limits certain
simplifications are possible. In the context of this Letter,
the case of equal constituent masses was discussed to some
extent in [2,3]. In this Letter we consider the case when
the masses of the constituents differ significantly from one
another.

Our main goal is a practical algorithm which allows a
calculation of the bound-state energy levels in a given order
of perturbation theory (in a and Za� as an expansion in
powers and logarithms of m�M with an arbitrary precision.
The opposite situation, i.e., calculation of the energy levels
to all orders in a but in a fixed order in the ratio m�M,
has been studied in the literature [4–7].

In many practical situations only the first few terms of
the expansion in m�M are required. Nevertheless, we be-
lieve that it is useful to construct such an algorithm in its
generality. First, higher corrections in the ratio m�M might
become relevant. For example, in the muonic hydrogen
m�M corresponds to mm�Mp � 0.113, not a very small
parameter. In exotic hadronic atoms, such as pionic hy-
drogen, that ratio might be even larger. In hydrogen and
muonium, where m�M is smaller, the very high precision
of experiments warrants a precise computation of the re-
coil effects. Second, a complete algorithm means that one
can obtain the whole series in m�M at once and additional
cross-checks become possible.
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We first recall that nonrelativistic bound-state energies
can be computed using an effective field theory [8]. In
[2,3] we have shown how dimensional regularization facili-
tates this approach. One has to distinguish two different
contributions. The first one is the contribution of the rela-
tivistic region in the loop-momentum integrals; in what
follows we will refer to these contributions as “hard” con-
tributions. This is usually obtained as a Taylor expansion
of the relevant scattering amplitudes in spatial momentum
components of external particles (which can be taken on
shell).

Second, there is the so-called “soft” contribution, given
by usual time-independent perturbation theory in quantum
mechanics. An important point to note is that the soft
contribution can in general be easily evaluated for arbi-
trary masses of constituents. As one can see from the
Schrödinger equation, this is so because the essential dy-
namics of a nonrelativistic bound state is governed by the
reduced mass of the system rather than by the masses of
individual constituents. In this respect, for the soft con-
tributions the relation between the two masses is not very
important and once the equal mass case has been solved,
the rest follows easily.

Therefore, in the situation where the two masses are dif-
ferent, the real problem is in computing the hard contribu-
tion and this is what we are going to discuss in this Letter.
We will show that there is a simple way to expand the
hard scattering diagrams in powers of m�M. The essen-
tial advantage of this method is that it can be automated
and many terms of the expansion can be easily computed.
The only limitation is the available computer power; as
a matter of principle, infinitely many terms in the m�M
expansion can be obtained. High-performance symbolic
algebra software is of great help in such computations (we
use FORM [9]).

The remainder of this Letter is organized as follows.
First the method is described in detail. Next, we compute
the a�Za�5 radiative recoil corrections to both the Lamb
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shift and the hyperfine splitting up to the fourth order in the
expansion in m�M. Finally, we present our conclusions.

The method we are going to discuss is based entirely on
using dimensional regularization. Note that for consistency
one also needs the soft contribution in dimensional regu-
larization; as we mentioned earlier this part of the problem
is well understood [2,3].

The hard diagrams should be evaluated exactly at the
threshold (zero relative velocity of the constituents). For
this reason, the relevant Feynman integrals depend on only
two scales, m and M. Since we are interested in their
expansion in m�M, it is useful to be able to expand the
integrands, so that only homogeneous one-scale integrals
have to be evaluated. Once this is achieved, the calcula-
tions simplify dramatically.

Our method is motivated by the known procedure which
permits an expansion of Feynman diagrams in large mo-
menta and masses [10–12]. Although originally formu-
lated in a different way, that procedure can be reformulated
more practically using the notion of momentum regions.
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To arrive at the result one should follow a sequence of
steps [13]: (1) determine large and small scales in the prob-
lem; (2) divide the entire integration volume into regions
where each loop momentum is of the order of some of the
characteristic scales; (3) in every region perform a Taylor
expansion in the parameters which are small in the given
region; (4) after the expansion, ignore all the constraints
on the regions and perform the integration over the entire
integration volume; (5) add the contributions of different
regions to obtain the final result. The only step in this se-
quence which might appear counterintuitive is step 4, since
one may suspect some double counting. The reason why
that does not happen is that the scaleless integrals vanish
in the dimensional regularization. This in turn implies that
the results obtained from the integrals over different re-
gions are different analytic functions of the parameters of
the problem. Below this procedure will be demonstrated
in some detail.

To illustrate the method we focus on the last diagram in
Fig. 1 and consider the following scalar integral:
Z �dDk1� �dDk2�
�k2

1 � �k2
2 � �k2

2 1 2p1k2 1 id�2
3

1

��k1 1 k2�2 1 2p1�k1 1 k2� 1 id� �k2
1 2 2p2k1 1 id�

. (1)
Here �dDk� stands for dDk��2p�D , p1 � mQ, p2 � MQ,
where Q � �1, 0, 0, 0� is the timelike unit vector. Only the
relevant infinitesimal imaginary parts of the propagators
have been displayed. We are going to illustrate the expan-
sion of the integral in Eq. (1) in powers of m�M following
the five steps outlined above.

There are four momentum regions to be considered. In
the first one all the momenta are of the order of the large
mass M. In this case one can expand the electron propa-
gators in mQki . The resulting integrals are all of the form

Z �dDk1� �dDk2�
�k2

1 �a1 �k2
2 �a2�k1 1 k2�2a3 �k2

1 2 2p2k1�a4
, (2)

with some integer powers ai . One immediately recognizes
that all these integrals are identical with the general two-
loop self-energy integrals of the particle with mass M for
which the general solution is known [14].

Next, there are two momentum regions where either
k1 � M and k2 � m or k1 � M and k2 � M, but k1 1

k2 � m. It is then easy to see that after a Taylor expansion
in the small variables, the integral factorizes into a product
of two simple one-loop integrals.

The fourth region is determined by the condition k1 �
k2 � m. In this case the heavy particle propagator can
be expanded in powers of k2

1 and in essence it becomes a
static propagator. The general integral in this case has the
form

J �
Z �dDk1� �dDk2�

�k2
1 �a1�k2

2 �a2�k2
2 1 2p1k2 1 id�a3

3
1

��k1 1 k2�2 1 2p1�k1 1 k2� 1 id�a4 �2p2k1 2 id�a5
.

(3)

Such integrals represent the only new type required for
this calculation and the easiest way to solve them is to
employ the integration-by-parts techniques [15,16]. Any
integral J can be algebraically expressed as a combination
of the two-loop on-shell self-energy integrals and four new
master integrals. The latter are the only integrals we have
to compute, but this can be easily accomplished with help
of Feynman parameters. The results read
J6
1 �

Z �dDk1� �dDk2�
�k1Q 2 1 6 id� �k2

2 1 id� ��k1 1 k2�2 2 1 1 id�

�
1

�4p�D

∑
2G�1 2 e�G�3e 2 2�B�4e 2 3, 2e 2 1� 2 �1 7 1�

p
p G

µ
2e 2

3
2

∂
B

µ
5
2

2 3e, 2
1
2

1 e

∂∏
,

J6
2 �

Z �dDk1� �dDk2�
�k1Q 6 id� �k2

2 2 1 1 id� ��k1 1 k2�2 2 1 1 id�
� 6

p
p

�4p�D
G

µ
2e 2

3
2

∂
B

µ
5
2

2 3e, 2
1
2

1 e

∂
. (5)

Let us add that all momentum regions other than the ones we discussed lead to scaleless integrals and are therefore not
relevant. This concludes the construction of our expansion algorithm.
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FIG. 1. The forward-scattering radiative recoil diagrams. The
bold line represents the heavy constituent of the bound state
(e.g., proton if we consider hydrogen) and the thin line, the
light one (an electron). Diagrams with the crossed photons in
the t channel are not displayed.

We have applied this algorithm to compute the
O ���a�Za�5��� radiative recoil corrections to the Lamb shift
and the hyperfine splitting of a general QED bound state
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composed of two spin-1/2 particles with the masses m and
M. It is well known that in this case the soft contribution
is absent and the hard corrections shown in Fig. 1 are the
only diagrams we have to consider. We have done the
calculation in a general covariant gauge; the cancellation
of the gauge parameter dependence serves as a check of
the computation.

For the S-wave ground state energy E we define

E � Eaver 1

µ
1
4

2 dJ0

∂
Ehfs , (6)

where J � 0, 1 is the total spin of the two fermions form-
ing the bound state.

For the hyperfine splitting we obtain
dErad rec
hfs �

8�Za�4m3

3mM
a�Za�

Ω
ln2 2

13
4

1
m

M

µ
15

4p2 ln
M

m
1

1
2

1
6z3

p2 1
17

8p2 1 3 ln2

∂
2

µ
m

M

∂2µ
3
2

1 6 ln2

∂

1

µ
m

M

∂3µ
61
12

p2 ln2 M

m
1

1037
72p2 ln

M

m
1

133
72

1
9z3

2p2 1
5521
288p

1 3 ln2

∂

2

µ
m
M

∂4µ
163
48

1 6 ln2

∂

1

µ
m
M

∂5µ
331

40p2 ln2 M
m

1
5761
300

p2 ln
M
m

1
691
240

1
9z3

2p2 1
206 653
8000p2 1 3 ln2

∂æ
, (7)

where m � mM��m 1 M� is the reduced mass of the bound state.
For the spin-independent energy shift we find

dErad rec
aver � a�Za�5 m3

m2
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32

2 2 ln2 1
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µ
3
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1
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p2 2 2 ln2
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1 8 ln2

∂
1
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2

8
3p2 ln2 M

m
2

55
18p2 ln

M
m

1
47
36

2
3z3

p2 2
85

9p2 2 2 ln2

∂

1

µ
m
M

∂4µ
2
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1 4 ln2
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µ
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M
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60p2 ln2 M
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. (8)

To our knowledge the terms O �m3�M3� and higher are new for both Ehfs and Eaver, while the other terms have been
obtained previously. In addition, the coefficient of the O �m�M� term in Eq. (8) has been the subject of some controversy,
since two different numerical results have been reported, [17–19] and [20].

Our result for this term,

a�Za�5 m3

m2

m
M

µ
3
4

1
6z3

p2 2
14
p2 2 2 ln2

∂
� 21.324 027 96 a�Za�5 m3

m2

m
M

, (9)
is in excellent agreement with the numerical result
of Ref. [20] where the coefficient 21.324 029�2� was
obtained.

The discrepancy in the O ���m2�Ma�Za�5��� corrections to
the Lamb shift reported in [17–19] and [20] has been the
major source of the theoretical uncertainty in the so-called
isotope shift (apart from the uncertainty associated with
the proton and deuteron charge radii, see below), i.e., the
difference between energies of 2S to 1S transitions in deu-
terium and hydrogen:

DE � �E�2S� 2 E�1S��D 2 �E�2S� 2 E�1S��H . (10)
Experimentally, DE is known with the uncertainty of about
0.15 kHz [21]; the theoretical uncertainty associated with
higher order QED effects and with the uncertainties in
the electron-to-proton and the electron-to-deuteron mass
ratios is about 1 kHz each. On the other hand, the dif-
ference in the results of Refs. [17–19] and [20] leads
to 2.7 kHz difference in DE. Our result for this term,
Eq. (9), removes this discrepancy in favor of the result of
Ref. [20].

It is well known that the high accuracy of the experimen-
tal value of DE cannot be used directly because of signifi-
cant uncertainties in the value of the proton and deuteron
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charge radii which enter the theoretical formula for DE. In
this situation the problem is usually turned around and one
determines the difference of the charge radii of the proton
and deuteron using DE. Here, we do not pursue this topic
any further. The related phenomenology can be extracted
from Ref. [21] (see also the recent review [22], where re-
sults of Ref. [20] should be used).

We have constructed an efficient algorithm which per-
mits an expansion of the energy levels of a bound state of
two constituents with masses m and M in powers of m�M.
This expansion is similar to, although not identical with,
the asymptotic expansions of Feynman diagrams familiar
from particle physics. We have demonstrated the useful-
ness of this procedure by computing several terms in the
m�M expansion for the a�Za�5 radiative recoil correc-
tions to both the Lamb shift and the hyperfine splitting of
a general QED bound state.

Although we have described only a calculation of the
radiative recoil corrections, the method is clearly applica-
ble to all other types of corrections relevant for the bound
states. In particular, the pure recoil corrections can be
treated in a similar way. It remains to work out the de-
tails in that case, but the principles are clear.

One of the terms in our result for the radiative recoil
corrections to the Lamb shift is the O ���a�Za�5m3��mM����
term for which two different numerical results have been
previously reported. Our calculation confirms the result of
Ref. [20].

Another aspect of this work might be related to a higher
number of loops. It is clear that the described method
can be systematically applied in higher orders. Probably
more important, it may facilitate the extraction of terms
enhanced by lnM�m which can be determined from the
singularities of the contributions of different expansion
regimes. Since those singularities must cancel in the com-
plete result, their coefficients can be found by a partial cal-
culation of the divergent parts of those contributions which
can be evaluated most easily.
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