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Strange Quark Polarization of the Nucleon: A Parameter-Independent Prediction
of the Chiral Potential Model
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We perform a one-loop calculation of the strange quark polarization (Ds) of the nucleon in an SU(3)
chiral potential model. We find that if the intermediate quark excited states are summed over in a
proper way, i.e., summed up to a given energy instead of given radial and orbital quantum numbers, Ds
turns out to be almost independent of all the model parameters: quark masses and potential strengths.
The contribution from the quark-antiquark pair creation and annihilation “Z” diagrams is found to be
significant. Our numerical results agree quite reasonably with experiments and lattice QCD calculations.
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The intrinsic strangeness content of the nucleon is a
key ingredient to understand the structure and dynam-
ics inside baryons. While the experimental investigation
of the nucleon spin structure [1] clearly indicates that a
strange quark sea exists and polarizes inside the nucleon,
the successes of the naive spin-flavor SU(6) valence quark
model in various aspects suggest that the strangeness con-
tent should belong to higher order effects for the nucleon.
The SU(3) flavor chiral quark model, which couples light
quarks to octet pseudoscalar mesons by the requirement of
chiral symmetry, provides a natural mechanism for such a
perturbative picture: at zeroth order the ground state octet
baryons are described by SU(6) wave functions of three
valence quarks, and at second order in the quark-meson
coupling sea quarks can be generated by emitting a meson
from the valence quark. For example, in the nucleon the
strange quark can be generated by emitting a K1 from the
u quark or by emitting a K0 from the d quark (Fig. 1), and
hence strange quarks can contribute to the nucleon spin
structure.

In this paper we will adopt the standard perturbation the-
ory to calculate the strange quark polarization of the nu-
cleon in the framework of an SU(3) chiral potential model.
As will be shown, up to second order the diagrams of Fig. 1
are the only contributions. Hence, a quantitative determi-
nation of the strange quark polarization is a clean test for
the dynamical picture of the chiral quark model. On the
other hand, the u or d quark polarizations obtain contribu-
tions from many other diagrams and therefore depend on
many more model parameters.

To set up our calculation scheme, we first define the
effective Lagrangian for the SU(3) chiral potential model
[2]:
L � c̄�i≠� 2 S�r� 2 g0V �r��c 1
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The model Lagrangian is derived from the nonlinear s

model in which meson fields are introduced to restore chi-
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ral symmetry [3]. c is the quark field with flavor and
color indices implied; the scalar term S�r� � cr 1 m
represents the linear scalar confinement potential cr and
the quark mass matrix m; V �r� � 2a�r is the Coulomb
type vector potential and Fp � 93 MeV is the pion decay
constant. fi (i runs from 1 to 8) are the pseudoscalar
meson fields and li are the Gell-Mann matrices. The
quark-meson interaction term of Eq. (1) is symmetrized
because the mass matrix m does not commute with all li

when quarks of different flavors have different masses.
The zeroth order quark Hamiltonian is set up as

Hq �
Z

d3x cy

∑
�a ?

1
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∏
c . (2)

It has discrete eigenstates which are obtained by numerical
solution of the Dirac equation with a scalar and vector field
[2]. We write the solution as

c�x� �
X
a

ua�x�aa 1
X
b

yb�x�by
b . (3)

Equation (3) forms the basis of our unperturbed wave
functions, where quarks are bound permanently by the con-
finement potential which is included in Hq. From Eq. (3)
we can construct the quark propagator:

D�x1,x2� � �0jT�c�x1�, c̄�x2�	 j0
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FIG. 1. Strange quark contribution to the nucleon spin; a cross
on the quark line denotes the axial vector vertex g3g5.
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FIG. 2. Feynman diagrams for the matrix element
�Nj

R
d3x c̄g3g5cjN
 up to second order; (A) is of the

zeroth order, (B) is the renormalization counter term, (C) and
(D) are vertex and exchange diagrams, respectively. The meson
line in (C) can be a p or h (while the intermediate quark is u
or d), or a K (while the intermediate quark is s); the meson
line in (D) can be only a p or h.

The meson propagator given by Eq. (1) is the free one:

Dij�x1, x2� � �0jT�fi�x1�, fj�x2�	 j0


�
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Z
d4q
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Given the unperturbed basis we can construct any physi-
cal quantity up to a desired order in the quark-meson in-
teraction. In the following we study the quark contribution
of flavor q �� u, d, s� to the nucleon spin which is defined
through

Dq �
�N j

R
d3x c̄qg3g5cqjN


�N jN

. (6)

At zeroth order Hq gives the usual SU(6) three-quark
states for the nucleon with the single quark wave function
ua in the ground state. The zeroth order diagram for
the numerator of Eq. (6) is indicated in Fig. 2A and the
denominator in Fig. 3A which is simply unity. Clearly,
strange quarks do not contribute at this order.

The corresponding Feynman diagrams which contribute
to Ds up to second order are shown in Figs. 2 and 3. The
denominator �NjN
 can be denoted as �1 1 const�F2

p�,
which is then to be expanded as �1 2 const�F2

p 1 . . .�
and multiplied with the numerator �N j

R
d3x c̄g3g5cjN 
.

This, however, has no effect on Ds if finally only the
second order terms are kept, since the lowest order s quark
contribution is already proportional to 1�F2

p .
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FIG. 3. Feynman diagrams for the normalization �N jN
 up to
second order; (A) is of the zeroth order which is simply unity,
(B) is the meson exchange diagram. The meson line in (B) is a
p or h.

In the Lagrangian of Eq. (1) the main effect of the non-
perturbative quark-gluon interaction is supposed to be in-
cluded by the scalar and vector potentials. In principle
we can also include a residual perturbative gluon piece.
This will introduce further modifications to Du and Dd.
However, since the perturbative quark-gluon interaction is
diagonal in flavor space, at second order it cannot generate
strange sea quarks for the nucleon.

Now we are in a good position to calculate Ds for the
nucleon: up to second order the only diagrams we need
to consider are the subset of the diagrams of Fig. 2, which
are given in Fig. 1. For the evaluation, we first give the ex-
plicit forms for ua�x� and yb�x�: ua�x� � e2iEatua��x�ta ,
yb�x� � eiEbtyb� �x�tb, where t is the flavor wave func-
tion and the spatial wave function is

ua� �x� �

µ
gnjl

2i �s ? �̂rfnjl

∂
Ym

jl �

µ
gnjlY

m
jl

ifnjlY
m
jl0

∂
, (7)

where g and f are real functions, n is the radial quantum
number, and Ym

jl � �̂r� are the vector spherical harmonics. The
second equality of Eq. (7) follows from �s ? �̂rYm

jl � 2Ym
jl 0

with l0 � 2j 2 l. For computational convenience, we
will use exactly the same form for yb��x�. Since for the
antiquark solution the lower component is the large
component, for yb�x� l is actually the orbital
quantum number of the small component, and
jEj�l11�2j . jEj�l21�2j. Namely, for antiquarks the
energy sequence is inversed.

Denoting the initial and final quark states by ui and uf ,
respectively, the contribution of the diagrams of Fig. 1 is

ds �
1

F2
p

Z
d3x d4x1 d4x2 D�x2, x1�ūf�x2�S�r2�g5li

3 D�x2, x�g3g5D�x, x1�S�r1�g5liui�x1� . (8)

Here we use ds to indicate that it is only the contribution
from a single quark state. Inserting the explicit expressions
for the propagators, we get
ds �
1
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p
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FIG. 4. Time-ordered diagrams of Fig. 1; (A) is the positive-
energy state contribution; (B) is the negative-energy state con-
tribution; (C) and (D) are the quark-antiquark pair creation and
annihilation “ Z” diagrams.

where Daa0 �
R

d3x ūag3g5ua 0 , and similarly for Dbb 0,
etc. The four time-ordered terms in Eq. (9) correspond to
the time-ordered diagrams of Fig. 4.

We omit here the details for calculating ds of Eq. (9).
The integrals of Eq. (9) can be reduced analytically to ra-
dial integrations at the vertex points (r1 and r2) and of the
loop momentum j �qj. The remaining integrations are car-
ried out numerically. Ds for the whole nucleon is just ds
times a spin-isospin factor which can be straightforwardly
calculated to be 2.

In Table I we list our model parameters. Since Fp �
93 MeV and mK � 495 MeV are fixed by experiments,
our model contains four free parameters: the two quark
masses mu,d , ms and the two strength constants of the
scalar and vector potential denoted by c and a. The
parameter a is fixed by the long-wavelength, transverse
fluctuations of the QCD based static-source flux-tube pic-
ture [4,5]. It was obtained to be 0.26 in [6] and 0.30 in
[7], while a much larger value of about 0.52 was used by
the Cornell group [8]. Recent lattice calculation [9] got
a value around 0.32 in the quenched approximation, and
suggested that relaxing the quenched approximation may
lead to a � 0.40. Quark masses and confinement strength
are rather uncertain quantities. To study the variation of
Ds over all the parameters, we choose in our calculation
four different sets of parameters, including both current
and constituent quark masses.

We study a wide range of parameters because for the
purpose of fitting experimental data they often vary sig-
nificantly from one model to another. A demonstration of
how the chiral quark model can give a good account of
012001-3
TABLE I. Model parameters.

Para. mu,d ms a c
set (MeV) (MeV) (GeV2)

1 10 150 0.26 0.11
2 10 150 0.26 0.16
3 300 500 0.26 0.11
4 10 150 0.50 0.18

the baryon spectroscopy was performed by Glozman and
Riska in [10].

Table II gives the numerical results of Ds for the first
two sets of parameters. The intermediate quark/antiquark
states are summed over up to a radial quantum number of
n � 8 and total angular momentum j � 17�2. We also
list the intermediate results with the summation including
states up to n � 6 and j � 11�2. The contributions from
the four time-ordered diagrams in Fig. 4 are given sepa-
rately. We note significant contributions from Figs. 4C
and 4D, in which a quark-antiquark pair is created or an-
nihilated by the axial vector current; these processes are
usually referred to as the “Z” diagrams. On the other
hand, the diagram of Fig. 4B gives a fairly large posi-
tive contribution; therefore if the Z diagrams are neglected,
we would incorrectly conclude that Ds of the nucleon is
positive.

From Table II one would conclude that a stronger
confinement also gives a larger Ds. This is due to the
quark-meson coupling which is proportional to the effec-
tive quark mass S�r� � cr 1 m. However, to compare
with the energy scale in the lattice QCD calculation of
Ds, we should sum the excited states up to a given energy
instead of given radial and orbital quantum number. The
resummed Ds according to energy are given in Fig. 5.
Since the quark states are discrete, we get plateaus in
Fig. 5 at the energies where no new states emerge.

Since the strange axial current is a nonconserved com-
posite operator, it has divergent matrix element (as is seen
in Fig. 5), and therefore must be renormalized. Analo-
gous to the lattice renormalization, we cut the quark/anti-
quark intermediate states at an energy of 1.7 GeV, which
is roughly the inverse of the lattice spacing in the lattice
calculation of Ds (a21 � 1.74 GeV in [11]). The “renor-
malized” results are given in Table III. [In principle, we
can also do renormalization by imposing a cutoff on the
meson momentum, such as using the Pauli-Villars regu-
lator �q2 2 L2�21. But then the intermediate states have
TABLE II. Numerical results for Ds by summing the intermediate quark/antiquark states up to given radial and orbital quantum
numbers.

n j Para. Fig. 4A Fig. 4B Fig. 4C Fig. 4D Sum
set

6 11�2 1 20.0212 10.0829 20.0844 20.0844 20.1070
2 20.0340 10.1238 20.1255 20.1255 20.1613

8 17�2 1 20.0220 10.0964 20.1109 20.1109 20.1475
2 20.0345 10.1445 20.1655 20.1655 20.2211
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FIG. 5. Plot of Ds as a function of the maximal energy up to
which the intermediate states are summed.

to be summed up to convergence. In practice this is not
workable. An illustration with L � 1.7 GeV is given in
Fig. 5.]

We note a very interesting phenomena in Fig. 5: the re-
sult for Ds summed up to a given energy is rather robust
against the variation of all the parameters. The insensitiv-
ity is especially impressive compared to the huge variation
of m and c. Table III shows that the contribution from the
Z diagrams is still significant.

The insensitivity of Ds to the parameter sets can be
attributed to the fact that the increase of m and c [see
Eq. (1)] enhances the quark-meson coupling and moves up
the single quark state energy. Thus the contribution from
a single quark state increases due to the stronger coupling
but less states are accessible to be summed over up to a
given energy. Similarly, the increase of a suppresses the
contribution of a single quark state since the lower Dirac
components of the quark wave functions are increasing.
But it also reduces the quark state energy, so we have more
states to sum over.

The main results of this paper can be summarized as
follows: (1) Strange quark polarization is a very clean and
robust prediction of the chiral potential model. Up to sec-
ond order the only contributions arise from the diagrams
of Fig. 1. Ds depends on only a few of the model param-
eters, and our calculation shows further that the variation
of these parameters does not influence Ds too much, pro-
vided we sum over the intermediate quark/antiquark state
up to a given energy. (2) The contribution from the in-
termediate excited states are important. It is not enough
to restrict the intermediate state to the ground or the first
few states. (3) Among the time-ordered diagrams, the
quark-antiquark pair creation and annihilation Z diagrams
are significant. It is the Z diagrams (Figs. 4C and 4D) that
introduce a negative value for Ds in the nucleon, while
the intermediate negative-energy states (Fig. 4B) give a
012001-4
TABLE III. Numerical results for Ds by summing the inter-
mediate quark/antiquark states up to the energy 1.7 GeV.

Para. set Fig. 4A Fig. 4B Fig. 4C Fig. 4D Sum

1 20.0228 10.0785 20.0742 20.0742 20.0927
2 20.0365 10.0958 20.0805 20.0805 20.1017
3 20.0464 10.1538 20.1046 20.1046 20.1018
4 20.0400 10.0834 20.0636 20.0636 20.0838

fairly large positive contribution. The importance of the
pair creation and annihilation contribution to Dq has also
been noticed by some of us previously in a valence and
sea quark mixing model [12]. (4) Our numerical result is
quite consistent with experiments [Ds�Q2 � 3 GeV2� �
20.10 6 0.01 6 . . . , where the second 6 sign represents
further sources of error, principally the low x extrapolation
[13] ] and lattice QCD calculations [Ds � 20.12�1� [11],
20.109�30� [14] ], and is also consistent with a schematic
calculation in the context of chiral quark model by Cheng
and Li [15]. To the best of our knowledge this is the first
time that Ds is consistently calculated up to the one-loop
level in a quark model.
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