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Deterministic walks over a random set of N points in one and two dimensions (d � 1, 2) are con-
sidered. Points (“cities”) are randomly scattered in Rd following a uniform distribution. A walker
(“tourist”), at each time step, goes to the nearest neighbor city that has not been visited in the past t

steps. Each initial city leads to a different trajectory composed of a transient part and a final p-cycle
attractor. Transient times (for d � 1, 2) follow an exponential law with a t-dependent decay time but
the density of p cycles can be approximately described by D�p� ~ p2a�t� . For t ¿ 1 and t�N ø 1,
the exponent is independent of t. Some analytical results are given for the d � 1 case.
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The study of random walks has been very fruitful in
physics and mathematics, and the theory of such stochastic
processes is a well-developed subject. The study of deter-
ministic walks is also an interesting subject, but presents
the analytical difficulties common to the area of nonlinear
dynamical systems and has been less investigated [1].
Here we propose a simple and intriguing problem: a
deterministic walk over a random graph with N nodes
that is also an example of a local (“on-line”) optimization
dynamics. It may be called the “local traveling salesman
problem” or perhaps the “tourist problem” for short. The
deterministic dynamics produces a division of the system
phase space in a O �N� number of attractor basins which
trap the walker (ergodicity is broken). The problem is
reminiscent of walks in rugged landscapes or zero-
temperature spin-glass dynamics but the equivalent of
“local minima” are cycles instead of point attractors, as in
Kauffman networks [2].

The model is defined as follows: N points are randomly
distributed with a uniform density r in Rd, where d is the
dimensionality of the space. These points may be thought
of as “cities” and they may be viewed as vertices of a
random graph. At each time step, the “tourist” follows
the deterministic rule: Go to the nearest city that has not
been visited in the past t time steps. Notice that the tourist
wants to minimize only the distance to the next city (a local
optimization procedure), not the sum of all distances along
the trajectory as in the traveling salesman problem.

Starting from a random city, the tourist performs a
trajectory composed of a transient part and a final p-cycle
attractor. In this Letter, we report the statistics for some
relevant quantities similar to those measured in Kauffman
networks [2]: (a) the probability Pt�t� for obtaining a tran-
sient of size t, defined as the number of steps before the
tourist enters some attractor; for large t, it is exponential
Pt�t� ~ exp�2t�j�t�� with the decay time j�t� growing
exponentially for d � 1 and linearly for d � 2; (b) the
density of p cycles Dt�p�, for d � 1, seems to be neither
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exponential nor a power law, while for d � 2, Dt�p� fol-
lows a power law for nonextreme values Dt�p� ~ p2a�t�

for t ¿ 1, with a independent of t for t�N ø 1;
(c) the total density of attractors, D �t� �

P
p Dt�p�,

is the number of different attractors per city for a
given memory, decays exponentially for d � 1 and, for
d � 2, as t21; for d � 1, Dj is linear in t, and for
d � 2 it is a constant (t ¿ 1 and t�N ø 1); and
(d) for d � 1, the average number �n�p�� of cities present
in a p cycle which is compared to an analytical result
where we show that some cycles are prohibited as odd
cycles (apart 3 cycle) and 6 cycle for t � 1.

Our model can be of general interest for optimization
theory with local constraints, nonadditive cost functions,
and studies of deterministic dynamical systems with
quenched disorder. However, we would like to suggest
some more specific motivations for considering this class
of problem. The model can be viewed as an example
of local foraging strategies [3]. It is arguable that for
biological agents (and biologically inspired robots) it
could be sometimes more important to minimize the
distance traveled in each movement between two safe
places instead of optimizing some global cost function
[4]. In another spatial scale, cycles could be related to
stable migratory routes on environments with localized
resources. Local optimization appears due to short range
sensorial/cognitive capacities which is a determinant
factor in unfamiliar or hostile landscapes [5].

The only nontrivial parameter of the model is the mem-
ory window t. Self-avoidance is limited to this window
and trajectories can intersect outside this range. If t � 0
(no memory) the tourist goes simply to the nearest city
until two cities, which are reciprocally nearest neighbors,
are found, entering a 2-cycle. For t � N 2 2 the
trajectory is totally self-avoiding and one has a kind of
traveling salesman problem nearest-neighbor algorithm
[4]. The interesting cases are the intermediate ones. For
example, if t � 1, the last visited city cannot be revisited,
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and only p cycles with p $ 3 can exist. For all t, the
relation p $ t 1 2 holds.

We stress that this problem is not simply related to geo-
metrical properties since the cycles appear only due to the
introduced dynamics. Naively, one could think that a p
cycle is a geometrical object, for example a cluster where
the distances between the points are smaller than any dis-
tance outside the cluster. This indeed is a sufficient but not
necessary condition to obtain a p attractor. For example,
for d � 2 (Fig. 1a), a walker with memory t � 1 starts
from city A and finds the 4-cycle ABCD. Although city E
is close to the cluster (since BE , AB), it is never visited
because BC , BE and CD , CE. However, if the tourist
starts from city C, one gets a 3-cycle that includes city E.
This degeneracy and superposition of attractors can be un-
derstood noticing that the trajectories of Fig. 1 are repre-
sented in configuration space, not in phase space. In phase
space, points correspond to t 1 1-tuples �Xt, . . . , Xt2t�
where Xt is the position �x, y� of the tourist at time t and
trajectories never intersect. Only for t � 0 the configura-
tion space is equivalent to the phase space.

In the numerical experiments, N points (with d spatial
coordinates) are randomly scattered following a uniform
distribution in the interval �0, 1�d. The cities are arbitrarily
labeled as i � 1, . . . ,N and one constructs the Euclidean
distance matrix D [6]. Starting from some city, the tourist
accesses a transient trajectory until getting trapped in some
periodic attractor. The number of steps before the tourist
enters the cycle defines the transient length t. The period
p and the number of different cities n that pertain to the
attractor are also determined. The same city can be visited
more than once, thus n # p.

A finite size study has showed that the behavior of the
system is smooth as a function of 1�N, so we have used
N � 10 000 as a reasonable number for our simulations.
Periodic boundary conditions have been considered for
d � 1 and d � 2 and do not cause significant differences
compared to free boundaries. Since each city is used as a
starting point, a landscape with N cities produces N differ-

FIG. 1. (a) Example of superposition of attractors for d � 2
and t � 1: starting from A one obtains the 4-cycle ABCD, but
starting on C one gets the 3-cycle CBE; (b) the 3-cycle base
block for t � 1; (c) the 4-cycle for t � 1; (d) next permissible
cycle for t � 1: an 8-cycle made of two base blocks (see also
Fig. 5a); and (e) an example of odd (p � 13) cycle for t � 2
which is possible because of an internal loop.
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ent transients. The statistics over NR � 1000 realizations
of cities sets (“maps”) are collected. The fluctuation in
Figs. 2, 3 and 5 are mainly due to the sampling (NR), not
N . We have NNR � 107 trajectories treated for each di-
mensionality d.

A natural question is about the existence of some critical
t that produces a phase transition (in the thermodynamical
limit N ¿ 1), for example the emergence of an untrapped
(percolating) transient state. The distribution of transient
times does not suggest this possibility because it is expo-
nential, Pt�t� ~ exp�2t�j�t��. This is shown in Figs. 2
and 3 for d � 1 and d � 2, respectively. The memory can
be very large (t ¿ 1) but t�N ø 1. The exponential de-
cay may be understood as follows. The accumulative of the
transient times distribution is the probability of a walker
not being trapped in a cycle at t (irrespective to the cycle
period p). Consider q�t� the probability of the walker not
entering a cycle after a movement. The movement of the
walker is generated deterministically, but q�t� is the same
on every movement. The probability of a walker making
t steps and not entering a cycle is P�t� ~ e2t�j�t�, where
j�t� � 21� lnq�t�. The probability that a walker enters
a cycle in a given movement is p̃ � 1 2 q. Assuming
p̃ ø 1, leads to p̃ � 1�j�t�.

For d � 1, the characteristic times grow as j�t� ~

exp�gt� (inset Fig. 2) and the total density decays as
D �t� ~ exp�2g0t� (Fig. 4a). For d � 2, one observes
the linear dependence j�t� ~ td, d � 1.0 (inset Fig. 3);
the total density decays as a power law D �t� ~ t2d0

with d0 � 1.0 (Fig. 4b). The probability p̃ is to a first
approximation proportional to D �t�. This means that
D �t�j�t� should be constant, that is, g � g0 and d � d0.
This is indeed the case for large values of t in d � 2 (see
Fig. 4c). For d � 1, although the exponential terms can-
cel, a linear factor remains. A better expression for d � 1
decay time is j�t� � ct exp�gt�. The linear prefactor oc-
curs in both d � 1 and d � 2, the exponential dependence
on t (in D Fig. 4a and j inset of Fig. 2) is a fingerprint
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FIG. 2. Distribution of transient times Pt �t� for d � 1. From
left to right: t � 0, 2, 3, 4, and 5. Inset: Decay time j�t�.
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FIG. 3. Distribution Pt�t� of transient times for d � 2. From
left to right: t � 0, 1, 2, 3, 5, and 10. Inset: Decay time j�t�.

of d � 1 and is due to the probability of the occurrence of
barriers [P�di11 . di 1 di21 1 . . . 1 di2t�, where di is
the distance traveled in step i] which trap the dynamics of
a walker into cycles. On the basis of central limit theorem,
it is possible to show that this probability decays exponen-
tial as a function of t.

A property of natural interest is the density Dt�p� of p
cycles, estimated as the number of different p cycles di-
vided by N , in the limit of very large systems (N ¿ 1).

FIG. 4. Total density of attractors D �t�: (a) d � 1; (b) d �
2; and (c) D �t�j�t� for d � 1 (squares) and d � 2 (circles),
error bars smaller than symbol size.
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Evaluating this quantity requires careful enumeration be-
cause, when starting from all the possible initial states,
one must not count the same attractor twice. For d � 1,
some attractors are forbidden as the odd (apart p � 3) and
p � 6 cycles for t � 1, the presence of long cycles indi-
cates Dt�p� is nonexponential, although the evidence for a
power law is weak (Fig. 5a). For d � 2, one observes, for
nonextreme values, a power law Dt�p� ~ p2a�t� (Fig. 5b)
behavior [7–9]. For t ¿ 1 and t�N ø 1, the exponent
a � 2.7 6 0.2 is independent of t (inset Fig. 5b).

The average number of cities �n�p�� pertaining to cycles
of period p has been studied (Fig. 6). For d � 1 there is
almost no dispersion in the number of cities per attrac-
tor. A p cycle has n�p� cities. We also have found that,
for n . 2�t 1 2�, the following relation holds for even
cycles: n�p� � p�2 1 t 1 1. To see how this relation
emerges, notice that for each t there are configurations of
points that constitute barriers to the displacement of the
tourist. For example, for t � 1, a barrier to right dis-
placement appears when di21 1 di , di11. Normally, a
tourist will perform a constant direction movement (say,
to the right) until a barrier is encountered, then the tourist
turns around and moves until another barrier (to left dis-
placements) is found. A cyclic attractor stabilizes, the at-
tractor set being composed by the points between the two
barriers.

FIG. 5. Examples of attractor densities Dt�p�: (a) d � 1,
t � 1 (squares), t � 3 (triangles), and t � 6 (circles);
(b) d � 2, t � 1 (squares), t � 4 (stars), and t � 10
(circles), N � 10 000 and NR � 1000. Inset: exponent a�t�.
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FIG. 6. Number of cities per attractor �n�p��. (a) d � 1, t �
1 (filled circles) and t � 6 (empty circles), theoretical curves
(solid) �n�p�� � p�2 1 t 1 1.

For each t there is a minimum cycle of period pt �
t 1 2, which we call a base block (Fig. 1b). A base block
is composed of nt � t 1 2 cities. The next cycles follow
specific constructions (Fig. 1c). But when n is large, geo-
metrical constraints impose that the most common p cycles
are made of two base blocks (one in each attractor extrem-
ity) joined by nI intermediate cities; see Fig. 1d. An at-
tractor with n cities thus has nI � n 2 2nt intermediate
points. These intermediate cities contribute to the total pe-
riod with pI � 2nI 1 2 steps (since, for nI � 0, the join-
ing of the base blocks contributes with two steps). Thus,
the total period is p � 2 3 pt 1 pI � 2�n 2 t 2 1�,
which leads to n�p� � p�2 1 t 1 1 (Fig. 6).

This relation holds for cycles with n $ 2nt � 2�t 1

2�, because only these cycles can incorporate two inde-
pendent base blocks. For t � 1, this is the unique con-
ceivable manner of constructing cycles, meaning that odd
cycles are prohibited (and also p � 6 cycles; see Fig. 5a).
For t . 1, it is possible to construct odd cycles by using
internal loops and very specific initial conditions (an ex-
ample with t � 2 is given in Fig. 1e).

In d � 2, the attractors are polygons with different
forms and shapes so that this strict relation n�p� between
periods and cities does not hold, although �n� also scales
linearly with p (not shown). For t � 1, one finds that odd
cycles are less probable than even cycles (Fig. 5b), which
is reminiscent of the d � 1 behavior. Indeed, this oc-
curs because elongated, quasilinear, odd attractors in two-
dimensional space are prohibited by the same geometrical
constraints present in the one-dimensional case.

Finally, another analytical result for the d � 1 and t �
0 case can be obtained. It is not hard to see that the distri-
bution of interval sizes follows an exponential distribution
P�di� � Ne2Ndi and only 2-cycle attractors exist, corre-
sponding to pairs of reciprocal nearest neighbors. Since
the interval sizes are independent variables, one can show
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that the probability to have mutually nearest neighbors is
P2 � P�di21 . di and di11 . di� � 1�3, that is, on av-
erage, one third of the sequences of four points leads to
reciprocal nearest neighbors and so to 2-cycles. Since the
number of sequences of four points is, in the large N limit,
equal to the number of points, one obtains D0�2� � 1�3.
This has been fully confirmed by our numerical simula-
tions [10].

Deterministic walks, which are partially self-avoiding,
have been presented in continuous space in one and two
dimensions. This simply stated problem presents a rich
and highly nontrivial dynamics, where some particular and
general aspects have been presented. Also, we have shown
that although memory favors space exploitation, it does not
lead to an ergodic behavior. Ergodicity can be obtained by
a generalization of the proposed model by introducing a
stochastic component which will be fully presented and
explored in the near future.
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