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Using a novel approach, we investigate the shape of the average spectrum and the spectral fluctuations
of the k-body embedded unitary ensemble in the limit of a large matrix dimension. We identify the transi-
tion point between a semicircle and a Gaussian shape. The transition also affects the spectral fluctuations
which deviate from the Wigner-Dyson form and become Poissonian in the limit k ø m ø l. Here m
is the number of fermions and l the number of degenerate single-particle states.
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Introduction.—The stochastic behavior displayed
by spectra and wave functions of quantum many-body
systems (atoms, molecules, atomic nuclei, quantum dots)
is usually and successfully modeled in terms of canonical
random-matrix theory (RMT) [1,2]. However, this type
of modeling is not completely realistic: All the above-
mentioned many-body systems are effectively governed
by one- and two-body forces, while canonical RMT is
tantamount to assuming many-body forces between the
constituents. Thus, a stochastic modeling of the one- and
two-body interactions would yield a much smaller number
of independent random variables than used in RMT. For
instance, the number of independent two-body matrix
elements in a shell-model calculation in atoms or nuclei is
typically much smaller than the dimension N of the ma-
trices involved, while the number of independent random
variables in RMT is of order N2. This difference poses
the question whether a more realistic stochastic modeling
of many-body systems might yield results which differ
from RMT predictions. The question was addressed in the
1970s with the help of numerical simulations using ma-
trices of fairly small dimensions. The main results were:
In a certain limit, the average level density does not have
the shape of a semicircle but is Gaussian; the ensembles
are neither stationary nor ergodic; unfolding of the spectra
yields Wigner-Dyson spectral fluctuation properties; see
Ref. [3]. Interest in model Hamiltonians with random two-
body interactions has resurged in recent years in several
areas of many-body physics (see Ref. [4], and references
therein), and the question of possible further differences
between such models and RMT has resurfaced. It is the
purpose of this Letter to shed new light on this question. In
particular, we will show that for certain parameter values,
the spectral fluctuation properties of realistic models differ
from those of RMT. We discuss the implications of this
novel and surprising result.

Focusing attention on the case of unitary symmetry, we
use a paradigmatic model, the k-body embedded Gauss-
ian random ensemble EGUE�k� introduced by Mon and
French [5]. For this ensemble, a number of analytical re-
sults have been obtained [1,5,6]. However, as emphasized
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in Ref. [1], page 413, a comprehensive analytical approach
to the spectral fluctuation properties of the ensemble is still
lacking. This is due to the fact that, in contrast to RMT,
embedded ensembles do not possess the (orthogonal or
unitary) invariance in Hilbert space which is so essential
for the successful analytical treatment of RMT.

We use three different methods: The supersymmetry
approach, the “binary correlation approximation” of Mon
and French [5], and the construction of two “limiting en-
sembles.” We also make use of two fundamental and novel
results on the second moment: The eigenvector expan-
sion and duality. We compare our results with those of the
Gaussian unitary ensemble (GUE) of random matrices.

Definitions.—Our Hilbert space is spanned by N �
� l

m � Slater determinants jm�, m � 1, . . . , N, obtained by
distributing m spinless fermions over l degenerate single-
particle states. The ratio f � m�l is the filling factor. Us-
ing standard creation and annihilation operators a

y
j and aj ,

j � 1, . . . , l, we have jm� �
Qm

s�1 a
y
js
j0�. Here j0� is the

vacuum state. The creation operators are written in ascend-
ing order of the indices js. The k-body interaction Vk has
the form �k � 1, . . . , m�

Vk �
X0

yj1,...,jk ;i1,...,ik a
y
j1

· · · a
y
jk

aik · · · ai1 . (1)

Here, and in Eqs. (2) and (9), the prime on the summation
sign indicates that the sums over all indices run from 1 to l
with the constraint that j1 , · · · , jk and i1 , · · · , ik .
The k-body interaction matrix yj1,...,jk ;i1,...,ik is complex
Hermitian. The independent matrix elements are uncor-
related Gaussian random variables with zero mean and a
common second moment y2. The value of

p
y2 determines

the overall energy scale and is set equal to unity without
loss of generality. By taking matrix elements �njVkjm�, we
“embed” the random k-body interaction into an m-fermion
system. This defines EGUE�k�. The ensemble is invari-
ant under unitary transformations of the single-particle
states 1, . . . , l and, for k � m, reduces to the standard
GUE. As always in RMT, we are interested in the limit
N ! ` �l ! `�.
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Second moment.—The Gaussian distribution of the ma-
trix elements in Eq. (1) implies that the �njVkjm�’s are
also Gaussian distributed random variables with zero mean
value. All spectral properties of EGUE�k� are, therefore,
determined by the second moment

A�k�
mn,rs � �mjVkjs� �rjVk jn�

�
X0

�mja
y
j1

· · · a
y
jk

aik · · · ai1js�

3 �rjay
i1

· · · a
y
ik

ajk · · · aj1 jn� . (2)

The bar denotes the ensemble average. We have A�k�
mn,rs �

A�k�
rs,mn and �A�k�

mn,rs�� � A�k�
sr,nm � A�k�

mn,rs. The matrix
A�k� is Hermitian in the pairs of indices �m, n� and
�r, s�. Moreover, it is easy to prove the “duality” relation
A�k�

mn,rs � A�m2k�
ms,rn which connects the second moments of

the k-body and the �m 2 k�-body interactions.
Eigenvector expansion.—We construct the eigenvectors

C�sa� and eigenvalues L�s��k� of the Hermitian matrix
A�k� satisfying

P
rs A�k�

mn,rsC�sa�
sr � L�s��k�C�sa�

mn . Here
s � 0, . . . , m and a labels the degenerate eigenvectors.
We are guided by the example of the GUE where the
second moment of the Hamiltonian H reads HmsHrn �
�l2�N �dmndrs. The two Kronecker symbols display the
unitary invariance of the GUE. The matrix dsr is an
eigenfunction of the second moment with eigenvalue l2.
All traceless unitary matrices are likewise eigenfunctions
but belong to eigenvalue zero. In the present case, we use
the ansatz C�sa�

mn � �mja
y
j1

· · · ay
js

ais
· · · ai1

jn�. The label
a enumerates all possible distinct choices of the indices
j1 , · · · , js; i1 , · · · , is. It is easy to check that
C�sa� is an eigenvector of the matrix A�k� if no two indices
�jr , ir 0� are equal. The corresponding eigenvalue is

L�s��k� �

µ
m 2 s

k

∂ µ
l 2 m 1 k 2 s

k

∂
. (3)

When at least two indices �jr , ir 0� are equal, C�sa�
mn is not

an eigenfunction of A�k� but a linear combination of eigen-
functions with labels s0 # s. This is because an eigen-
function C�s0a�

mn with eigenvalue L�s0��k�, s0 , s, looks like
a member of class s when the operator defining C�s0a�

is multiplied by �
P

p ay
pap�s2s0 � ms2s0. To remove the

components belonging to lower s0 values, we orthogonal-
ize (in the sense of the trace) all matrices C�sa�

mn in which at
least two indices �jr , ir 0 � are equal, to all matrices gener-
ated from classes s0 , s in the manner just described. The
resulting matrices are eigenvectors with eigenvalue L�s��k�.
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We choose Hermitian linear combinations of the degener-
ate eigenvectors which obey the orthonormality conditionP

mn C�sa�
mn C�tb�

nm � Ndstdab. The number D�s� of linear in-
dependent eigenvectors in class s is given by D�0� � 1 and

D�s� �

µ
l
s

∂2

2

µ
l

s 2 1

∂2

, s $ 1 . (4)

We have
Pm

s�0 D�s� � N 2 showing that the eigenvectors
form a complete orthonormal set. Hence, the matrix A�k�

possesses an eigenvalue decomposition of the form

A�k�
mn,rs �

1
N

mX
s�0

L�s��k�
X
a

C�sa�
mn C�sa�

rs . (5)

We note that the eigenvectors do not depend on the rank k
of the interaction, only the eigenvalues do. Equation (3)
shows that the sum over s actually terminates at s �
m 2 k. For k � m only s � 0 contributes, and the re-
sult reduces to the GUE expression with l2 � L�0��m�.
Conversely, Eq. (5) extends the GUE result to EGUE�k�
and constitutes a central result of this paper.

Moments of Vk .—Using the eigenvector decompo-
sition of A�k�, duality, and the orthonormality of the
C�sa�’s, we calculate the low moments of Vk and the
kurtosis k for which we write k � 2 1 Q�k,m, l�.
We recall that k � 2�3� for the semicircle (Gaussian,
respectively). We find Q�k, m, l� � �1�N�

Pmin�m2k,k�
s�0 3

��L�s��k�L�s��m 2 k����L�0��k��2	D�s�. For l ! ` and
keeping both k and m fixed, we have Q�k, m, l� ! 0
if 2k . m while Q�k, m, l� ! �m2k

k ��� m
k � for 2k # m.

This shows that the transition of the average spectrum
from a semicircle to a Gaussian shape begins (with
decreasing k) at 2k � m. We ascribe the special role of
the point 2k � m to duality. Likewise we can show that
the relative fluctuations of the first and second moments
of Vk and, thus, nonergodic features vanish for l ! `.

Supersymmetry.—We calculate spectrum shape and
spectral fluctuation properties of EGUE�k� using the
supersymmetry approach [7,8]. After averaging over
the ensemble, the integrand of the generating functional
contains an exponential whose argument depends linearly
on the matrix A�k�. With the eigenvalue decomposition (5),
the argument of the exponential becomes a sum of squares
of bilinear forms in the integration variables. This allows
us to perform the Hubbard-Stratonovich transformation.
For each pair �s, a� we introduce a supermatrix s�sa�

of composite variables. The resulting integral over the
composite variables contains the factor exp�2Leff�. The
effective Lagrangian Leff is given by
N

2

X
sa

trg�s�sa��2 1 trm trg ln

∑µ
E 2

1
2

eL

∂
dmn 2

X
sa

l�s��k�s�sa�C�sa�
mn 2 Jmn

∏
. (6)

Here, l�s��k� � 1�L�s��k��1�2. The energy arguments E1 and E2 of the advanced and the retarded Green function define
E � �1�2� �E1 1 E2� and e � E2 2 E1, while J stands for the source terms. The diagonal supermatrix L distinguishes
the retarded and advanced cases and is defined in Ref. [8]. The saddle-point equation has the solution s

�sa�
s.p. � ds0t�0�
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where t�0� is the standard GUE saddle-point solution.
Thus, the saddle-point condition yields a semicircular
spectrum and universal GUE spectral fluctuations. To de-
termine the range of validity of this solution, we have cal-
culated the first nonvanishing term in the loop expansion.
The expansion is obtained by writing s�sa� � s

�sa�
s.p. 1

ds�sa� and expanding in powers of ds�sa�. We recall that
for the GUE, each term of the loop expansion vanishes
in the limit N ! ` with an inverse power of N . For
the one-point function, we find that the loop correction
is proportional to Q�k, m, l�. This is consistent with the
result of the previous paragraph and reaffirms our conclu-
sion that the transition from a semicircular to a Gaussian
shape sets in at 2k � m. It would be desirable to show
that all higher terms of the loop expansion vanish likewise
asymptotically for 2k . m but this proof is beyond our
means. For the two-point function, the loop correction
yields nonuniversal spectral fluctuations of the type first
considered by Kravtsov and Mirlin [9]. The amplitude of
this correction (given in units of the inverse mean level
spacing) vanishes, however, for l ! `. It does so as N22

for k � m but only as �lnN�22k for both k and f fixed.
We see that for l ! `, the supersymmetry approach does
not yield a limit on the range of validity of the universal
GUE spectral fluctuations of EGUE�k�.

The case k ø m ø l.—For this case where the super-
symmetry method does not yield relevant information on
spectral fluctuations, we use a modification of the binary
correlation approximation [1,5]. In the average two-point
function g�z1�g�z2�, we expand [6] both traced Green func-
tions g in powers of Vk. We collect the terms containing
equal powers of Vk. The ensemble average is taken by
Wick-contracting pairs of Vk’s in all possible ways. We
evaluate all pairs located on the same Green function as in
Ref. [5]. For the rest, we use simple counting arguments.
We show that for k ø m ø l, terms where s pairs of Vk’s
are not on the same Green function, are smaller by at least a
factor l2sk than the terms with s � 0. Thus, the connected
part of g�z1�g�z2� vanishes asymptotically compared to the
disconnected part, and the two-point correlation function

R2�z1, z2� �
g�z1�g�z2�

g�z1� ? g�z2�
2 1 (7)

approaches zero in the limit k ø m ø l. For similar
reasons, all higher correlation functions also vanish in
the same limit, and the spectral fluctuations become
Poissonian.

The case k � 1 with k ø m ø l illustrates this result.
Taking first m � k � 1, we construct the eigenvalues ea

and eigenfunctions Ca of a given realization of EGUE(1)
by diagonalization. The ea’s obey GUE spectral statistics;
the average spectrum has a semicircle shape, and the co-
efficients Uaj in the expansion Ca �

Pl
j�1 Uaja

y
j j0� in

terms of the single-particle basis are Gaussian distributed
random variables. For m . 1 and every realization of
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the ensemble, the eigenfunctions are Slater determinants
x of the Ca’s, the eigenvalues are sums of the ea’s,
and the average spectrum is an m-fold convolution of the
semicircle. This shows immediately that for m ¿ 1, the
spectrum has a Gaussian shape, and that the spectral fluc-
tuations are Poissonian. We have also shown that the states
x are localized.

Regular graphs.—Further insight into the spectral prop-
erties of EGUE�k� is gained by using yet another ap-
proach involving regular graphs and limiting ensembles.
A graphical representation of EGUE�k� is obtained by as-
signing to each Hilbert-space vector jm� a vertex m, and to
each nondiagonal element �njVkjm� which does not vanish
identically, a link connecting the vertices n and m. The
diagonal matrix elements �mjVkjm� are represented by
loops attached to the vertices m. The number of vertices is
N . The number M of links emanating from a given vertex
is the same for all vertices and given by

M �
kX

s�1

µ
m
s

∂ µ
l 2 m

s

∂
. (8)

For k , m, we have M , N 2 1 while M � N 2 1 for
k � m. The resulting graphical structure is called a “regu-
lar graph” in the mathematical literature. The total number
P of links is given by P � �1�2�MN . The number K
of uncorrelated matrix elements of EGUE�k� is given by
K � � l

k �2. It is interesting to study the ratio K�P. For
fixed m and f # 1�2, K�P grows monotonically with k,
starting out with very small values and reaching the limit
2N��N 2 1� for k � m. This suggests that deviations of
EGUE�k� from universal GUE behavior are caused by the
fact that the number of independent random variables is
too small in comparison with the number of links, making
it impossible for the system to become thoroughly mixed.

Limiting ensembles.—To test this hypothesis, we have
constructed and analyzed two limiting ensembles.
The first, EGUEmin�k�, is given by the matrix
elements �njVmin

k jm� of the interaction V min
k �

y
P0

a
y
j1

· · · a
y
jk

aik · · · ai1 . The factor y is a Gaussian
complex random variable. The ensemble EGUEmin�k�
has the same graphical representation as EGUE�k� but
possesses only a single random variable. We succeeded
in proving that for k � 1 and k � m, EGUEmin�k� is
fully integrable, has a Gaussian average spectrum, and
spectral fluctuations which are not of a GUE type. We are
convinced that these properties hold for all k. The second
limiting ensemble, EGUEmax�k�, carries the maximum
number of uncorrelated random variables consistent with
the graph structure of EGUE�k� and has Hilbert-space
matrix elements given by

ynm

X0
�njay

j1
· · · a

y
jk

aik · · · ai1 jm� . (9)

The matrix ynm is complex Hermitian. Elements not
connected by symmetry are uncorrelated complex Gauss-
ian random variables with mean value zero and variance
010601-3
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ynmyn0m0 � dmn 0dnm0. Using supersymmetry, we have
shown that EGUEmax�k� has an average spectrum of semi-
circle shape, that the spectral fluctuations are of univer-
sal GUE type, and that for l ! ` the leading term of the
loop expansion vanishes both for the one-point and for the
two-point functions. We conclude that the spectral proper-
ties of EGUEmax�k� coincide with those of GUE.

Conclusions.—We have studied the shape of the aver-
age spectrum and the eigenvalue fluctuations of the em-
bedded ensemble EGUE�k� in the limit of infinite matrix
dimension, attained by letting the number l of degenerate
single-particle states go to infinity. We have shown that for
sufficiently high rank k of the random interaction (2k . m
where m is the number of fermions), EGUE�k� behaves
generically: The spectrum has a semicircle shape, and
the eigenvalue fluctuations obey Wigner-Dyson statistics.
This does not come as a surprise. A transition to a differ-
ent regime takes place at or near 2k � m. It has long been
known that the average spectrum changes into a Gaussian
shape, although the point of departure from the semicircle
shape was not known previously. We have presented con-
clusive evidence that in addition — and contrary to general
expectations — the level fluctuations also change and are
not of a Wigner-Dyson type for 2k & m. In the extreme
case k ø m ø l, the spectral fluctuations are Poissonian,
and the eigenfunctions are likely to display localization
in Fock space. We cannot pin down precisely the k value
where such change occurs nor can we penetrate deeply into
the intermediate regime. This is not surprising as we do
not know of any other case where such an aim would have
been achieved. We cannot even say definitively whether
the transition from Wigner-Dyson to Poissonian statistics
is smooth or sudden. But we have circumstantial evidence
for a smooth transition: (i) The nonuniversal fluctuations
calculated from the loop correction set in smoothly. (ii) In
the case k � 1, the transition from GUE (for m � 1) to
Poisson behavior (for k ø m) is smooth. (iii) The ratio
K�P of the number of uncorrelated random variables over
the number of links changes smoothly with k for fixed m.

Formally and using diagrammatic language, we ascribe
the deviations from universal GUE behavior to the fact
that with decreasing k, intersecting Wick contraction lines
gain increased weight. Universal GUE results are obtained
whenever such contributions are negligible. This appar-
ently is the case for 2k . m. We ascribe the special role
of the transition point 2k � m to duality.

Physically, our results can be understood in terms of the
ratio K�P of the number of uncorrelated random variables
over the number of links. We have shown that if all links
were to carry uncorrelated random variables, the ensemble
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would have GUE spectral fluctuations. Conversely, if all
links were to carry the same random variable, the ensemble
would be completely integrable and display Poissonian
statistics. These statements hold for all values of k.
The actual situation is located between these two limits.
EGUE(1) is closest to the integrable case, and EGUE�m�
corresponds to the GUE. This shows that deviations from
GUE behavior are not caused by the number of zeros in
the matrix representation of the interaction but are strictly
due to correlations between the matrix elements carried
by the links.

As mentioned in the introduction, numerical simulations
have shown good agreement between the spectral fluctua-
tions of EGUE�k� and those of GUE. We ascribe this result
to the fact that the dimensions of the matrices used were
quite small. It is easy to see that the ratio K�P is relatively
close to unity for typical values such as k � 2, m � 8, and
l � 20. It is only in the limit l ¿ 1 that K�P becomes
very small, resulting in significant deviations of EGUE�k�
spectral fluctuation behavior from Wigner-Dyson statistics.

Details, further results, and the extension to EGOE�k�,
the orthogonal case, are given in Ref. [10].

We are grateful to O. Bohigas and T. H. Seligman. Both
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