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A recent proof of Bell’s theorem without inequalities [A. Cabello, Phys. Rev. Lett. 86, 1911 (2001)] is
formulated as a Greenberger-Horne-Zeilinger– type proof involving just two observers. On one hand, this
new approach allows us to derive an experimentally testable Bell inequality which is violated by quantum
mechanics. On the other hand, it leads to a new state-independent proof of the Kochen-Specker theorem
and provides a wider perspective on the relations between the major proofs of no hidden variables.

DOI: 10.1103/PhysRevLett.87.010403 PACS numbers: 03.65.Ud, 03.65.Ta, 42.50.–p
Bell’s theorem [1] refutes local theories based on
Einstein, Podolsky, and Rosen’s (EPR’s) “elements of
reality” [2]. A recently introduced proof without inequal-
ities [3] presents the same logical structure as that of
Hardy’s proof [4], but exhibits a greater contradiction
between EPR local elements of reality and quantum
mechanics. Here a simpler version of the proof in [3]
will be introduced. This new version parallels Mermin’s
reformulation [5] of Greenberger, Horne, and Zeilinger’s
(GHZ’s) proof [6] and, besides being simpler, it empha-
sizes the fact that [3] is also an “all versus nothing” [7]
or GHZ-type proof of Bell’s theorem, albeit with only
two observers. In addition, this new approach will allow
us to derive an inequality between correlation functions
which is violated by quantum mechanics. Moreover, this
new version will also constitute the basis for a new state-
independent proof of the Kochen-Specker (KS) theorem
[8]. The whole set of new results provides a wider
perspective on the relations between the most relevant
proofs of no hidden variables.

Consider four qubits, labeled 1, 2, 3, 4, prepared in
the state

jc�1234 �
1
2 �j0011� 2 j0110� 2 j1001� 1 j1100�� , (1)

which, as can be easily checked, is the product of two
singlet states, jc2�13 ≠ jc2�24.

Let us suppose that qubits 1 and 2 fly apart from qubits 3
and 4, and that an observer, Alice, performs measurements
on qubits 1 and 2, while in a spacelike separated region a
second observer, Bob, performs measurements on qubits 3
and 4.

By using the following notation, zi � szi, xi � sxi ,
and zixj � szi ≠ sxj, etc., and introducing (?) to separate
operators or operator products that can be viewed as EPR
local elements of reality, it is easy to check that the state
jc� satisfies

z1 ? z3jc� � 2jc� , (2)

z2 ? z4jc� � 2jc� , (3)

x1 ? x3jc� � 2jc� , (4)

x2 ? x4jc� � 2jc� , (5)

z1z2 ? z3 ? z4jc� � jc� , (6)
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x1x2 ? x3 ? x4jc� � jc� , (7)

z1 ? x2 ? z3x4jc� � jc� , (8)

x1 ? z2 ? x3z4jc� � jc� , (9)

z1z2 ? x1x2 ? z3x4 ? x3z4jc� � 2jc� . (10)

According to EPR, if Alice (Bob) can predict, with
certainty and without in any way disturbing Bob’s
(Alice’s) qubits, the value of a physical quantity of Bob’s
(Alice’s) qubits, then there exists an element of physi-
cal reality corresponding to this physical quantity [2].
Equations (2)–(10) contain only local (Alice’s or Bob’s)
operators and allow Alice to infer EPR local elements of
reality for Bob’s observables z3, z4, x3, x4, z3x4, and x3z4;
they also allow Bob to infer EPR local elements of reality
for Alice’s observables z1, z2, x1, x2, z1z2, and x1x2. In
addition, Eq. (2)–(10) allow Alice and Bob to predict the
following relations between the values of the elements
of reality:

y�z1�y�z3� � 21 , (11)

y�z2�y�z4� � 21 , (12)

y�x1�y�x3� � 21 , (13)

y�x2�y�x4� � 21 , (14)

y�z1z2�y�z3�y�z4� � 1 , (15)

y�x1x2�y�x3�y�x4� � 1 , (16)

y�z1�y�x2�y�z3x4� � 1 , (17)

y�x1�y�z2�y�x3z4� � 1 , (18)

y�z1z2�y�x1x2�y�z3x4�y�x3z4� � 21 . (19)

However, it is impossible to assign values, either 21
or 11, that satisfy Eqs. (11)–(19), because when we take
the product of Eqs. (11)–(19) each value appears twice in
the left-hand side, while the right-hand side is 21. We
therefore conclude that the predictions of quantum theory
for a single copy of the state jc� cannot be reproduced
with any local model based on EPR’s criterion of elements
of reality.

The GHZ proof of Bell’s theorem provided an “all
versus nothing” refutation of EPR elements of reality
but required three or more spacelike separated observers.
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The proof presented here, which is an extension of [3],
is an “all versus nothing” refutation which needs only
two observers.

In an ideal situation, the contradiction with EPR ele-
ments of reality would appear after many runs of nine dif-
ferent experiments, one for each of Eqs. (2)–(10). These
runs would accumulate evidence that the appropriate cor-
relations are strong enough to support elements of reality.
By using the results of eight of these experiments, one can
make a deduction about the results of the ninth experiment
based on elements of reality. According to quantum me-
chanics, such a deduction would then be contradicted in
every single run of this experiment.

However, the same conclusion cannot be inferred
directly from the actual data in a nonideal laboratory
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realization of the experiment because, for example, the
efficiency of real detectors does not allow us to observe
the strong correlations assumed both in the EPR original
argument [2] and in the gedanken proofs of Bell’s theo-
rem. To circumvent this problem it is common practice
to derive inequalities between experimentally observable
correlation functions whose validity relies on very general
probabilistic locality conditions but which are violated by
the corresponding quantum predictions [9]. Next, I will
derive a Bell inequality for the state jc� based on the
previously introduced gedanken proof. Such a derivation
parallels Mermin’s derivation of an inequality for n qubits
in a GHZ state [7].

All the relevant features of the gedanken proof
follow from the fact that jc� is an eigenstate of the
operator
O � 2z1 ? z3 2 z2 ? z4 2 x1 ? x3 2 x2 ? x4 1 z1z2 ? z3 ? z4 1 x1x2 ? x3 ? x4 1 z1 ? x2 ? z3x4 1 x1 ? z2 ? x3z4

2 z1z2 ? x1x2 ? z3x4 ? x3z4 , (20)

with eigenvalue nine.

We are now interested in the case in which the mea-
surements are imperfect and the observed correlation
functions Ez1?z3

, Ez2?z4
, . . . , Ez1z2?x1x2?z3x4?x3z4

fail to at-
tain the values assumed in the ideal case (i.e., �cjz1 ?

z3jc� � 21, �cjz2 ? z4jc� � 21, . . . , �cjz1z2 ? x1x2 ?

z3x4 ? x3z4jc� � 21) . We therefore inquire whether
the measured probability distribution functions PAB�a, b�
(with A being the operator that Alice measures on qubits
1 and 2, B being the operator that Bob measures on qubits
3 and 4, and each a, b being 21 or 11) that describe the
outcomes of the nine different experiments on the state
jc� can all be represented in the form

PAB�a, b� �
Z

r�l�p�a, l�p�b, l� , (21)

where l is a set of parameters common to the four qubits,
with distribution r�l�, subject only to the requirement that
the outcome of an experiment performed by Alice (Bob)
for given l does not depend on Bob’s (Alice’s) choice of
experiment.

If a representation (21) exists, then the mean of a product
of one of Alice’s measured operators, A, and one of Bob’s,
B, will be given by

EAB �
Z

r�l�EA�l�EB�l� , (22)

where each E in the integrand is of the form

E � p�11, l� 2 p�21, l� . (23)

In particular, the linear combination of correlation
functions corresponding to the linear combinations of
operators appearing in the definition of O [Eq. (20)] can
be expressed as
F �
Z

r�l� �2Ez1?z3 2 Ez2?z4 2 Ex1?x3 2 Ex2?x4

1 Ez1z2?z3?z4 1 Ex1x2?x3?x4 1 Ez1?x2?z3x4

1 Ex1?z2?x3z4 2 Ez1z2?x1x2?z3x4?x3z4� . (24)

According to quantum mechanics, in the state jc�, F is
given by

FQM � �cjOjc� � 9 . (25)

However, if it can be expressed in the form (24) there is
a more restrictive bound on F. Each of the 12 quantities
E (EA or EB) appearing in (24) is constrained by (23) to
lie between 21 and 11. Since the integrand of (24) is
linear in each E (keeping the other 11 fixed), it will take
its extremal values when the variables E take their extremal
values. Therefore, as can be easily checked, if F can be
represented in the form (24), then

F # 7 , (26)

which contradicts the corresponding quantum prediction
given by (25).

The first eight experiments involved in the inequality
consist of local measurements of single spin components
or single products of two spin components on qubits pre-
pared in the singlet state, and do not entail any particular
difficulty. To experimentally test property (10), or mea-
sure the corresponding correlation function in the inequal-
ity (i.e., Ez1z2?x1x2?z3x4?x3z4), it is not necessary to measure
z1z2 and x1x2 on Alice’s qubits and z3x4 and x3z4 on
Bob’s qubits. Each of such measurements is equivalent
[3] to making a complete discrimination between four Bell
states in both spacelike separated regions. If the qubits are
polarized photons, such complete discrimination requires
nonlinear interactions [10,11]. An experiment of this kind
was recently reported [12]. On the other hand, a setup for
performing joint measurements of z1z2 and x1x2 (or z3x4
010403-2
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and x3z4� for path and spin degrees of freedom of a single
particle was proposed in [13]. However, to experimentally
test property (10), it would be enough to be able to measure
the product of z1z2 by x1x2 on Alice’s qubits and the prod-
uct of z3x4 by x3z4 on Bob’s qubits. These measurements
are, respectively, equivalent to measuring y1y2 and y3y4
(being yi � syi), and could therefore be performed locally
by measuring y1 and y2 and multiplying their results, and
by measuring y3 and y4 and multiplying their results. As
can easily be checked, results y1y2 � 61 are equivalent
to results z1z2 ? x1x2 � 71, and results y3y4 � 61 are
equivalent to results z3x4 ? x3z4 � 61. However, while
it is not difficult to perform spin measurements along ei-
ther x or z directions on a qubit flying along direction
y, spin measurements along y face several problems. A
different solution arises from the observation that distin-
guishing between the results 11 and 21, when measur-
ing z1z2 ? x1x2, is equivalent to distinguishing between,
respectively, the pairs of Bell states �jf1�12, jc2�12� and
�jf2�12, jc1�12�, where

jf6� �
1
p

2
�j00� 6 j11�� , (27)

jc6� �
1
p

2
�j01� 6 j10�� . (28)

Analogously, distinguishing between the results 11 and
21 when measuring z3x4 ? x3z4 is equivalent to distin-
guishing between, respectively, the pairs of Bell states
�jx1�34, jv2�34� and �jx2�34, jv1�34�, where

jx6� �
1
p

2
�j00̄� 6 j11̄�� , (29)

jv6� �
1
p

2
�j10̄� 6 j01̄�� , (30)

where xj0̄� � j0̄� and xj1̄� � 2j1̄�. Therefore, previous
setups involving only linear elements which distinguish
two out of four Bell states for photons entangled in polar-
ization [10,11,14,15] could be used to test property (10).

Returning to the gedanken version, the fact that simi-
lar proofs of Bell’s theorem can be developed for every
common eigenstate of z1z3, z2z4, x1x3, and x2x4 leads us
to wonder whether our gedanken proof of Bell’s theorem
could be the basis for a state-independent proof of the KS
theorem on the impossibility of ascribing noncontextual
hidden variables (i.e., those which assign predefined val-
ues to the physical observables, assuming that such val-
ues do not depend on which other compatible observables
are jointly measured) to quantum mechanics [8]. Mermin
has derived such proofs of the KS theorem both from
a previous state-dependent proof of the KS theorem by
Peres [16] and from his own simplification [17,18] of the
GHZ proof [5,19].

Table I contains a state-independent proof of the KS
theorem based on the “all versus nothing” proof of Bell’s
theorem for two observers introduced in this paper. The
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TABLE I. Proof of the Kochen-Specker theorem. Each row or
column contains mutually commutative operators. The product
of the operators of each row or column is the identity, except
for the last column which is minus the identity. We cannot
assign noncontextual values, either 21 or 11, to each of the 17
operators appearing in the table if we assume that the product
of these values must be 11 for all the rows and columns, except
for the last column which must be 21. This is so because, when
the product of the values appearing in all the rows and columns
is taken, each value appears twice while the product of all of
them ought to be 21.

z1z3 z2z4 x1x3 x2x4 y1y2y3y4

z1 z2 z1z2

x1 x2 x1x2

z3 x4 z3x4

z4 x3 x3z4

main difference between Mermin’s proof of the KS theo-
rem inspired by Peres’ proof [16] and the proof in Table I
is that, while the former has two rows containing nonlocal
operators, in the latter only the first row contains nonlocal
operators (i.e., those which cannot be measured by only
one observer). This implies that, while the former cannot
be transformed into proof of Bell’s theorem, the latter (and
the one derived by Mermin from the GHZ proof) can be
converted into proof of Bell’s theorem.

In brief, I have shown that the Hardy-like proof pre-
sented in Ref. [3] can be rearranged as a GHZ-type proof
with only two observers which, on one hand, allows us
to derive an experimentally testable Bell inequality and,
on the other hand, leads to a new state-independent proof
of the KS theorem. Thus Ref. [3] and this paper provide
a wider perspective on the relations between the major
no-hidden-variable theorems (KS’s and Bell’s) and their
proofs (KS’s state independent [8], Bell’s with inequali-
ties [1,9], Hardy’s without inequalities but with probabili-
ties [4], and GHZ’s without inequalities or probabilities
[6,17,18]).
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