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Dark-Bright Solitons in Inhomogeneous Bose-Einstein Condensates
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We investigate dark-bright vector solitary wave solutions to the coupled nonlinear Schrodinger equa-
tions which describe an inhomogeneous two-species Bose-Einstein condensate. While these structures are
well known in nonlinear fiber optics, we show that spatial inhomogeneity strongly affects their motion,
stability, and interaction, and that current technology suffices for their creation and control in ultracold
trapped gases. The effect of controllably different interparticle scattering lengths is examined, and stabil-
ity against three-dimensional deformations is considered.

DOI: 10.1103/PhysRevLett.87.010401

Among the many features of nonlinear equations, the
emergence of solitons is one of the most interesting. For
the nonlinear Schrodinger equation (NLSE), which gov-
erns both nonlinear optical modes in fibers and dilute
Bose-Einstein condensates (BECs), two different kinds of
scalar solitons, bright and dark, are known [1]. In op-
tics, spatial bright and dark solitons arise in media with
focusing and defocusing nonlinearity, respectively, and for
BECs the s-wave scattering interaction is the determining
factor (attractive for bright solitons, repulsive for dark).
Whereas in gaseous BECs dark solitons only, and only
recently, have been observed [2,3], optical solitons are al-
ready on the verge of industrial application [4]. In addition
to the bright and dark scalar solitons, there are also vari-
ous multicomponent (vector) solitons known, which arise
as solutions to systems of coupled NLSEs. An elegant ex-
ample is the so-called dark-bright soliton, where a bright
optical solitary wave exists in a system with defocusing
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nonlinearity because it is trapped within a copropagating
dark soliton [S—7]. In this Letter, we investigate the be-
havior of dark-bright solitons (and solitary waves) in re-
pulsively interacting two-component BECs. We examine
the effects of spatial inhomogeneity, three-dimensional ge-
ometry, and dissipation, which are all important features of
BEC experiments.

In the context of cold atomic gases, the two vector com-
ponents evolving under the Gross-Pitaevskii NLSE are the
macroscopic wave functions of Bose-condensed atoms in
two different internal states, which we will denote as |D)
and |B). The nonlinear interactions are due to elastic
s-wave scattering among the atoms, and are effectively re-
pulsive (positive scattering length) for both systems (>*Na
and ®’Rb) in which multicomponent condensates have been
realized [8]. By rescaling lengths, energies, and the wave
functions, the general equations may easily be put into the
dimensionless form,
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iyp = —5%’ + [Vs + lysl* + glgpl* — u — Alus,

where the chemical potentials wp = u and wp = u + A have been introduced in the usual way. In 2*Na and 3'Rb,
the fortuitous smallness of the triplet scattering length means that the g; are naturally both close to unity; and quasi-one-
dimensional traps that are longitudinally very flat are under active experimental development [9]. So to review the basic
properties of dark-bright solitons, we will initially consider the nearly realistic case where g; = 1andV; = 0, j = D, B.
The dark-bright soliton solution [5—7] to Egs. (1) is then given by

Yp = iJwsina + Jucosa tanh{x[x — q(7)]},

where Np = [dx|ip|? is the rescaled number of par-
ticles in state |B), the soliton inverse length is k =
Jucosla + (Ng/4)2 — Np/4, the bright component
frequency shift is Qp = «?(1 — tan’a)/2 — A, and the
soliton position is g(¢) = g(0) + ¢« tana [see Fig. 1(a)].
The “binding energy” of the bright component in the
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well formed by the ¢, mean field is clearly «?/2; the
bright component phase shift ¢ is of significance only if
there are two or more solitons. Readers familiar with the
scalar solitons of the one-component NLSE will recognize
Yp as a dark (or “grey”) soliton of velocity-angle «,
and ¢p as a bright soliton, which can only be found
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FIG. 1. (a) A dark-bright soliton of Egs. (2), with &« = 0. The
rescaled densities of |i/5|?> and |¢p|> are shown with a broken
and a full line, respectively. (b) The size of a motionless dark-
bright soliton, in units of the healing length u~'/2, as a function
of N, B ,U/7 1/2.

in single-component condensates if they have negative
scattering length. The Thomas-Fermi-like expansion with
Np of the trapped bright component makes the soliton size
« ~! longer than for a single-component dark soliton at the
same w [see Fig. 1(b)].

The integrable system of Egs. (1) with g; =1 and
V; = 0 (known as the Manakov equation [10]) conserves
the free energy,

1
G = 5[ w2 + 1P

+ (Ignl* + lysl* — w)?* + 2Alysl*]

= %K3 + %NBKZ(l + tan’a) + NpA. 3)
Since G decreases with increasing soliton velocity, the
soliton is formally unstable (to acceleration). But one im-
plication of integrability is that perturbations of Egs. (2)
due to interactions with other waves (solitary or ordinary)
will not cause dissipation. If an inhomogeneous potential
is added, however, by allowing nonzero V; in (1), then the
system is no longer integrable, and the soliton can interact
nontrivially with the surrounding condensate. Neverthe-
less, if spatially V; vary slowly on the soliton scale «, then
in the frame comoving with the soliton the potentials are
slowly varying in time. As in the case of the scalar dark
soliton [11], a multiple time scale boundary layer analysis
shows that the soliton energy G(gq, N, ), given by replac-
ing u — mu — Vp(g) and A - A — Vg(q) + Vp(g) in
Eq. (3), is an adiabatic invariant [12]. The constancy of
G, up to second order in the ratio of soliton and potential
length scales, determines to the same accuracy the motion
of the soliton in the potential.

This motion simplifies for soliton speeds
|k tana| < 1 (the speed of sound), because

4 A2 3/2
G = _[M + =2 - VD(Q)i|
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dropping a term which is adiabatically constant. This im-
plies the low-velocity equation of motion,

gl =
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which, together with its numerical confirmation shown in
Fig. 2, is the primary result reported in this paper. In the
limit Np — 0, we recover the equation of motion of the
dark soliton [11], and as Np increases we find that the soli-
ton is more and more insulated from the effect of Vp,
and more sensitive to Vg — Vp. In the limit Np > |/u,
where the soliton is expanded by the large bright compo-
nent to many healing lengths in size, we have

q-(1-8 %)[Vg@ )

-V

—4 MNTD Vp(a), (6)
so that a small differential force on the bright component
will predominate. Our assumption that the whole soliton is
small compared to the trap scale, however, means that the
dark component retains its dramatic effect of giving the
soliton an effectively negative mass: the soliton accelerates
in the opposite direction to a force exerted through Vp. If
Vg and V), are equal, on the other hand, a highly expanded
dark-bright soliton with Np > /i moves in the potential
as if it had a very large positive mass (because, as one
can see from Eq. (4), the soliton’s potential energy is also
~ —Vp). Numerical integration of the coupled NLSEs
shows excellent agreement with Eq. (5) (see Fig. 2). Note
that, for harmonic Vy > Vp, Eq. (5) implies that there is
a critical Ng above which the soliton will be driven out
of the trap instead of oscillating. (Scalar dark or bright
solitons subjected to such potentials would both oscillate
nicely.) While the precise transition point between very
slow oscillation and very slow escape is difficult to check
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FIG. 2. Period of oscillation for a dark-bright soliton in a har-
monic trap calculated numerically (diamonds) and from Eq. (5)
(solid line). The potentials are related as Vg = yVp, with
vy = —1, —=0.5, 0.5, 0.75, 1, 1.25, and 1.5, respectively, for the
graphs starting from below. In all cases [ dx|ip|*> = 1000, so
that u ranges from 66.2 to 67.1. The divergence of the curves for
vy = 1.25 and y = 1.5 shows the breakdown of the oscillations.
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numerically, our simulations confirm that escape does
occur.

A trapping potential also modifies the effects of the
short-ranged interactions between solitons. Although the
respective bright component numbers « Ny of two soli-
tons are simply conserved during such interactions, the
relative phase of the two bright components strongly af-
fects the details of the interaction [13,14]: dark-bright soli-
tons repel each other when the phase difference between
the bright componentsis A¢p = ¢; — ¢, = 0, and attract
each other when this difference is A¢p = . This short
range behavior, which is opposite to that of scalar bright
solitons, occurs independently of the confining potential,
but if the effect of a potential is to keep two solitons close
together, then their phase-dependent interaction can sig-
nificantly affect their oscillations: see Fig. 3. Moreover,
even if the trap does not confine both solitons within their
interaction range, the inhomogeneous potential will still
qualitatively modify the effects of soliton collisions. With-
out a potential, the only net effect of a collision is a “jump-
like” spatial translation of the solitons, relative to where
each would have been if it had not encountered the other.
(See [15] for a detailed study of dark-bright soliton colli-
sions at V; = 0.) Figure 4 shows that, in a trap, such a
translation can transfer energy between solitons.

In addition to the inhomogeneous potential, integrabil-
ity may also be destroyed by the fact that the off-diagonal
interaction strengths g; will generally differ from unity.
In the quasi-1D limit, a condensate has three independent
interaction coefficients 7y = 2a;/(A; + Ay), where
ajx = ag; is the 3D s-wave scattering length for collisions
between atoms in states j and k, and A; is the cross-
sectional area of the trap confining species (j,k = D, B).
We then rescale ¢p p to set the diagonal coefficients to
unity (; — t;/./¥j;), obtaining the two off-diagonal
coefficients g; = ypp/y;; which appear in (1). One can
therefore show that

Ap — A
ep = app <1+ D B>,

app AD + AB
(7)
_ @(1 _ w>
&p agp Ap + Ag)’

so that varying the relative tightness of radial confinement
for the two species yields one free control parameter, which
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FIG. 3. Symmetric collision of two dark-bright solitons in a
harmonic trap (y = 1). Degree of brightness indicates i3]
as a function of x and ¢, for repulsive (A¢ = 0) and attractive
(A¢ = ) interaction.
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can allow retuning of g; even without the measure of modi-
fying the scattering lengths themselves.

If g; # 1, solutions that are distorted versions of the
dark-bright soliton certainly exist [15,16], although they
may only be given in closed form for special cases. (For
instance, in the limit of small Ng, one may discard the
|rg|? terms in the NLSE, and find dark soliton solutions
for ¢rp, with g o« sech”[k(x — g)]forv(y + 1) = 2gp.
For gp > 1, there are also one or more excited bound
states of ¢g.) Such solutions are often referred to as soli-
tary waves rather than solitons, to indicate that they may
interact nontrivially with other solitary or ordinary waves.
This means that a collision between dark-bright solitary
waves may cause a net transfer of a bright component
from one solitary wave to the other; see Fig. 5. It also im-
plies that, unlike true solitons, which are transparent to all
quasiparticle modes, dark-bright solitary waves will suffer
from dissipation due to collisions with thermal particles
and phonons, even when the one-dimensional approxima-
tion is excellent. It is a problem beyond the scope of this
Letter to compute scattering rates with g; significantly dif-
ferent from unity. For g; close to unity, however, simple
estimates for the antidamping rate show it to be negligible,
at attainably low temperatures, because the cross sections
for dissipative collisions are proportional to the squares of
the scattering length differences.

In current experiments, however, soliton lifetimes are
limited not by one-dimensional dissipation, but by the
breakdown of the one-dimensional approximation and the
onset of transverse dynamical instability. As shown by
Muryshev et al. [17], a single-component dark soliton is
unstable to transverse excitations of wavelength greater
than the soliton size, so that radial confinement to within
a healing length should stabilize dark solitons. Extending
their method of analysis [12], one can show that the dark-
bright soliton is also stable against transverse instabilities
of wavelength less than its size x~!. Since for Ny > NI
this can be much larger than the healing length, dark-bright
solitons should be more stable than pure dark solitons, even
in traps that do not attain the quasi-1D regime.

Even more conveniently, we note that a robust method
for the controlled creation of dark-bright solitons has al-
ready been presented and analyzed in detail (without being
explicitly recognized as such) [18]. Dum et al. have shown
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FIG. 4. Collision of two dark-bright solitons in a harmonic trap
(y = 1). Shown is |¢z|* as a function of x and ¢. Initially one
soliton is at rest (i.e., ¢ = 0); after the collision both solitons
are oscillating.
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FIG. 5. Collisions between an initially dark soliton (Ng = 0)

and a dark-bright solitary wave initially at rest in a harmonic
trap. Each row is a separate evolution, with the left and
right plots showing |¢p|? and |¢5|?, respectively. In all cases
[dx|ypl> = 400 and [ dx|ipsl> = 4, for w = 36. From top
to bottom, we have (gp, gg) as follows: (a) (1.03,1.03); this
case is not distinguishable from (1,1). (b) (1.5,1.5); transfer
of bright component occurs. (c) (0.5,0.5); scattering as well
as transfer of bright component is seen in the last collision.
(d) (0.5,1.5); viewing a true “movie” of |p|* reveals that,
during the collisions, the background cloud is much more
significantly excited in this case than in the others, and this
is the reason for the noticeably different soliton motion in
this case. The case (1.5,0.5), which is not shown here, is just
noticeably different from (1.5,1.5).

that dark solitons may be created in one condensate com-
ponent by adiabatic transfer of population from a conden-
sate in another internal state, and have already noted that
in the late stages of this procedure the second component
appears as a stretched dark soliton around the remaining
population of the first, whose wave function approaches a
hyperbolic secant. Stopping short of complete adiabatic
transfer will, in fact, produce a dark-bright soliton of arbi-
trary Np. Masked Rabi transfer with phase imprinting may
also be possible, and the smoother total density profile and
larger size of a highly expanded dark-bright soliton should
simplify the creation of slow and stable solitons by this
method [19].

Our conclusion is that dark-bright solitons move in
trapped condensates much as dark solitons (though more
slowly, if Vp = Vg), and have strong advantages in
stability and controllability. Since |¢p|* can be imaged
separately and nondestructively, they also offer a realiza-
tion of Reinhardt’s and Clark’s proposal to track solitons
by trapping distinguishable atoms inside them [20]. And,
in addition to advancing soliton studies into the inho-
mogeneous regime of BECs, production of dark-bright
solitons in BECs would be the development of atom
optical tweezers with potentially submicron precision: the
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trapping and manipulation of ultracold atoms by ultracold
atoms.
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