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Using an isospin-dependent quantum molecular dynamics, nuclear stopping in intermediate heavy ion
collisions has been studied. The calculation has been done for colliding systems with different neutron-
proton ratios in beam energy ranging from 15 MeV�u to 150 MeV�u. It is found that, in the energy region
from above Fermi energy to 150 MeV�u, nuclear stopping is very sensitive to the isospin dependence
of in-medium nucleon-nucleon cross section, but insensitive to symmetry potential. From this investiga-
tion, we propose that nuclear stopping can be used as a new probe to extract the information on the iso-
spin dependence of in-medium nucleon-nucleon cross section in intermediate energy heavy ion collisions.
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Nuclear stopping in heavy ion collisions (HIC) has
been studied by means of rapidity distribution [1] and
asymmetry of nucleon momentum distribution [2–4]. It
is an important quantity in determining the outcome of a
reaction [5,6]. Bauer et al. pointed out that in intermediate
energy HIC, nuclear stopping power is determined by
both the mean field and the in-medium nucleon-nucleon
(N-N) cross section [4,7], but the mean field he used did
not include symmetry potential. Recently Bass, Yennello,
Johnston, Li, and co-workers suggested that the degree of
approaching isospin equilibration provides a means to
probe the mechanism and the power of nuclear stopping
in HIC [8–17]. But it is not clear how the stopping
power depends on the symmetry potential in the same
collisions. In this Letter, we report a new possibility to
extract information on the in-medium N-N cross section
in intermediate energy HIC by using nuclear stopping as a
probe. The effects of both in-medium N-N cross section
and symmetry potential on nuclear stopping shall be
studied comparatively for colliding systems with different
neutron-proton ratios in the beam energy ranging from 15
to 150 MeV�u by using an isospin dependent quantum
molecular dynamics (IQMD) model. The calculated
results show that stopping power depends strongly on the
isospin dependence of the in-medium N-N cross section,
but weakly on the symmetry potential for all the colliding
systems studied in the beam energy region from 45 to
150 MeV�u. However, in the energy region below Fermi
energy, nuclear stopping is sensitive to both the in-medium
N-N cross section and the symmetry potential.

The following two quantities can be used to describe
nuclear stopping in HIC. The momentum quadrupole QZZ

is defined as QZZ �
PA

i �2Pz�i�2 2 Px�i�2 2 Py�i�2�, and
the transverse-parallel ratio of momentum R is given by
R � �2�p� �

PA
i jP��i� j���

PA
i jPk�i� j�. Here the total

mass A is the sum of the projectile mass Ap and the target
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mass At . The values of the transverse and parallel com-
ponents of the momentum of the ith nucleon are P��i� �p

Px�i�2 1 Py�i�2 and Pk�i� � Pz�i�, respectively.
In order to describe the isospin effects on the dynami-

cal process of HIC, quantum molecular dynamics [11]
should be modified properly: (1) the density-dependent
mean field should contain the correct isospin-dependent
terms including symmetry potential and Coulomb po-
tential, (2) the in-medium N-N cross section should
be different for neutron-neutron (proton-proton) and
neutron-proton collisions, and finally, (3) Pauli blocking
should be counted by distinguishing neutron and proton.
The interaction potential is given by

U � USky 1 UYuk 1 UCoul 1 UMDI

1 UPauli 1 USym, (1)

where USky is the density-dependent Skyrme potential,
UCoul the Coulomb potential, and UYuk the Yukawa poten-
tial (for details, see Ref. [18]). UMDI is the momentum-
dependent interaction [11],

UMDI � t4 ln2�t5� !p1 2 !p2 �2 1 1�
r

r0
, (2)

where the parameters t4 � 1.57 MeV, t5 � 5 3

1024 MeV22, and r and r0 are nuclear density and
its normal value, respectively. UPauli is the Pauli potential,

UPauli � Vp

µ
h̄

p0q0

∂3

exp

µ
2

� !ri 2 !rj �2

2q2
0

2
� !pi 2 !pj �2

2p2
0

∂
dpipj , (3)

where dpipj � 1 for neutron-neutron or proton-proton,
and dpipj � 0 for neutron-proton. The parameters Vp �
30 MeV, p0 � 400 MeV�c, and q0 � 5.64 fm. Accord-
ing to our experience, the interaction potentials containing
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FIG. 1. The time evolution of R in central collisions for two colliding systems 112Sn 1 112Sn and 124Sn 1 124Sn in the three cases
(see the text).
Pauli potential can describe the structure effect of frag-
mentation in the dynamical process of HIC [19].

Usym is the symmetry potential. In the present calcu-
lation, three different density dependences of the sym-
metry potential [12] are used, i.e., U

sym
1 � cF1�u�dtz ,

U
sym
2 � cF2�u� �dtz 1 1

2d2�, and U
sym
3 � cF3�u� 3

�dtz 2 1
4d2�, where tz � 1 for neutron and tz � 21

for proton, c is the strength of symmetry potential, taking
the value of 0 or 32 MeV. F1�u� � u, F2�u� � u2,
and F3�u� � u1�2, u � r�r0. d is the relative neutron
excess d �

rn2rp

rn1rp
�

rn2rp

r , where rn and rp are neu-
tron and proton densities, respectively. First of all, the
density distribution of nucleus was calculated by using
Skyrme-Hartree-Fock with a parameter set named SKM*
(see Ref. [20]).

An empirical expression of the in-medium N-N cross
section [21] is used, s

med
NN � �1 1 a

r

r0
�sfree

NN , with the
parameter a � 20.2, and s

free
NN is the experimental free

N-N cross section [22]. It is known that the free neutron-
proton cross section is about 3 times larger than the free
proton-proton or neutron-neutron cross section below
300 MeV.

The nuclear stopping is studied for the colliding systems
20Ne 1 20Ne, 40Ar 1 40Ar, 80Zn 1 80Zn, 112Sn 1 112Sn,
and 124Sn 1 124Sn at different beam energies ranging from
15 to 150 MeV�u. The neutron-proton ratios of the above
colliding systems are 1.0, 1.22, 1.67, 1.24, and 1.48, re-
spectively. To make a comparative study of the isospin
effects of the in-medium N-N cross section and the sym-
metry potentials, we have investigated the following three
different cases. (i) The symmetry potential Usym � U

sym
1

is used with the strength c � 32 MeV and the isospin de-
pendent in-medium N-N cross section is employed. This
case is denoted by C � U

sym
1 1 siso and solid lines in

the figures. (ii) Usym � U
sym
1 and s

med
NN is isospin inde-
976
pendent, denoted by C � U
sym
1 1 snoiso and dashed lines.

(iii) There is no symmetry potential (c � 0) and s
med
NN is

isospin dependent, denoted by C � 0 1 siso and dotted
lines.

Figure 1 depicts the time evolution of R for central
collisions of the systems 112Sn 1 112Sn (top row) and
124Sn 1 124Sn (bottom row), with the beam energies of
15, 25, 35, 45, 72, 100, and 150 MeV�u for the above
three cases. It is very clear that for both colliding systems
the nuclear stopping R depends strongly on the isospin de-
pendence of the in-medium N-N cross section and weakly
on the symmetry potential as the beam energy is above
45 MeV�u. As the beam energy decreases to below the
Fermi energy, the nuclear stopping depends on both isospin
dependence of in-medium N-N cross section and the sym-
metry potential.
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FIG. 2. The time evolution of QZZ in central collisions of
112Sn 1 112Sn for different beam energies in the case of C �
U

sym
1 1 siso.
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FIG. 3. The time evolution of momentum quadrupoles for neu-
tron Qzz�neutron� and proton Qzz�proton� for the central col-
lisions of 112Sn 1 112Sn at the beam energies of 35, 72, and
100 MeV�u in the three cases as shown in Fig. 1.

In Fig. 2, the time evolution of QZZ is shown for central
collisions of the system 112Sn 1 112Sn at different beam
energies in the case of C � U

sym
1 1 siso. It is clearly

shown that as decreasing the beam energy, the asymp-
totic value of QZZ decreases towards zero, indicating an
isotropic nucleon momentum distribution of the whole
composite system and consequently a full stopping at the
beam energy below Fermi energy. As beam energy in-
creases to above Fermi energy, because of the preequilib-
rium particle emission and the longitudinal motion of the
projectlike and targetlike nuclei, Qzz will get certain non-
vanishing value, indicating partial transparency. It is also
seen that the relaxation time decreases as increasing beam
energy, which shows the fact that high beam energy leads
to more violent N-N collisions and faster dissipation. This
is consistent with the isospin equilibrium process as shown
by Li et al. [12].
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FIG. 4. The time evolution of R at different impact parameters
for system 112Sn 1 112Sn at E � 100 MeV�u in the three cases
as shown in Fig. 1.
TABLE I. The asymptotic values of the stopping R for the
reaction 112Sn 1 112Sn at E � 100 MeV�u as a function of im-
pact parameter.

b (fm) 0.0 1.0 2.0 3.0 4.0 5.0

R�Usym
1 1 snoiso� 0.70 0.72 0.60 0.55 0.51 0.50

R�Usym
1 1 siso� 0.82 0.82 0.71 0.63 0.56 0.50

R�0 1 siso� 0.84 0.81 0.74 0.64 0.58 0.51

In order to trace neutron and/or proton observables, in
Fig. 3 is given the time evolution of Qzz for neutron and
proton, respectively. The conclusion drawn from Fig. 1 is
applicable to both neutron and proton stoppings.

In Fig. 4 is plotted the time evolution of R for the reac-
tion 112Sn 1 112Sn at E � 100 MeV�u for different im-
pact parameters. It is noticed that the nuclear stopping for
small impact parameters (b � 0.0, 1.0, 2.0 fm) shows the
same behavior as the central collisions as in Fig. 1, while
as increasing the impact parameter, the behavior becomes
different and the dominant role played by the isospin-
dependent in-medium N-N cross section gradually disap-
pears. The impact parameter dependence of R�b� can be
seen more clearly from Table I where the asymptotic val-
ues of R are given for different b.

In Fig. 5 is shown the impact parameter-averaged
asymptotic values (the values at t $ 200 fm�c when
the nuclear stopping becomes nearly a constant as shown
in Figs. 1 and 2) of Qzz per nucleon (left window)
and R (right window) as a function of AT 1 AP in
the following seven cases: C � 0 1 siso by the solid
square; C � U

sym
1 1 siso denoted by the solid circles;

C � U
sym
2 1 siso by solid triangle; C � U

sym
3 1 siso

by solid diamond; C � U
sym
1 1 snoiso by open circles;

C � U
sym
2 1 snoiso by open triangle; C � U

sym
3 1

snoiso by open diamond. In the calculation the beam en-
ergy is 100 MeV�u and five colliding systems have been
considered, i.e., 20Ne 1 20Ne, 40Ar 1 40Ar, 80Zn 1 80Zn,
112Sn 1 112Sn, and 124Sn 1 124Sn. From Fig. 5, it can
be seen that the nuclear stopping depends strongly on the
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FIG. 5. The impact parameter averaged asymptotic value of
Qzz (left window) and R (right window) as a function of AT 1
AP at E � 100 MeV�u in the seven cases (see the text).
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FIG. 6. The nuclear stopping R as a function of beam energy
for two collision systems at t � 200 fm�c in the three cases as
in Fig. 1.

isospin dependence of in-medium N-N cross section and
weakly on the symmetry potential, though it is slightly
different for the three different forms of symmetry poten-
tial, especially for larger-mass systems. It is also shown
that the nuclear stopping power increases as increasing
the total mass of the colliding system, and the decrease of
Qzz or the increase of R implies the increase of nuclear
stopping.

Figure 6 shows the asymptotic value at t � 200 fm�c of
R as a function of the beam energy for the same colliding
systems and the same collision conditions as in Fig. 1.
From the figure, one can draw the same conclusion as from
Fig. 1.

From the above comparative study of nuclear stopping
for different colliding systems, beam energies, and impact
parameters by using IQMD, we have obtained the follow-
ing physical picture of the collision dynamics: from above
the Fermi energy to about 150 MeV�u, the dynamics is
dominated by N-N collisions and the role played by the
mean field is less important. The main consequence of the
N-N collisions is the transformation of the initial longi-
tudinal motion to the motion in other directions and the
subsequent thermalization of the system. In this case, nu-
clear stopping R and Qzz are sensitive to nucleon-nucleon
collisions, and can thus be used as a measure of the dissi-
pative process. However, as the beam energy decreases to
below the Fermi energy, the collision dynamics is governed
by both the mean field and the N-N collision which result
in one-body and two-body dissipation or thermalization,
respectively. Thus as indicators of the thermalization, R
and Qzz depend on both the mean field and the in-medium
N-N cross section.
978
In summary, from the above results and discussions we
conclude that the nuclear stopping R and Qzz can be used
as a probe to extract information on the isospin depen-
dence of the in-medium N-N cross section in HIC in the
beam energy region from above the Fermi energy to about
150 MeV�u.
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