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Critical Exponents of the Gross-Neveu Model from the Effective Average Action
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The phase transition of the Gross-Neveu model with N fermions is investigated by means of a non-
perturbative evolution equation for the scale dependence of the effective average action. The critical
exponents and scaling amplitudes are calculated for various values of N in d � 3. It is also explicitly
verified that the Neveu-Yukawa model belongs to the same universality class as the Gross-Neveu model.
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The Gross-Neveu (GN) model [1] is one of the simplest
models for interacting fermions. Nevertheless, in three di-
mensions our quantitative understanding beyond some uni-
versal characteristics of the phase transition has remained
rather incomplete. The universality class of the GN model
in dimensions between 2 and 4 has been argued to be the
same as the Neveu-Yukawa (NY) model [2] in 4 2 e di-
mensions [3]. Both the large N and e expansion indi-
cate that a second order phase transition takes place for
some critical value of the coupling constant if the number
of fermion species N is larger than one [4]. The anoma-
lous dimensions have been calculated up to the third order
in the 1�N expansion [5], while some critical exponents
have been computed to the order 1�N in the phase with
spontaneous symmetry breaking (SSB) [6]. In this Let-
ter we find the second order phase transition and calcu-
late the critical exponents employing an analytical method
based on nonperturbative flow equations for scale depen-
dent effective couplings. We directly obtain results for
arbitrary dimension and without a restriction to large N .
Despite the presence of massless fermions we are able to
investigate the symmetric phase. Because of the fermion
fluctuations the infrared physics is not trivial in the NY lan-
guage and requires a careful discussion of the critical expo-
nents. Beyond the universal critical behavior our method
gives a description for arbitrary values of the GN coupling
away from the critical point. In particular, we compute the
nonuniversal critical amplitudes.

The running couplings parametrize the effective average
action Gk [7] which is a type of coarse grained free energy.
It includes the effects of the quantum fluctuations with mo-
menta larger than an infrared cutoff k. In the limit where
the average scale k tends to zero Gk becomes therefore
the usual effective action, i.e., the generating functional of
1PI Green functions. In the limit k ! ` it approaches the
classical action. In a theory with bosons and fermions the
scale dependence of Gk can be described by an exact non-
perturbative evolution equation [7,8]
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where t � ln�k�L� with L some suitable high momentum
scale. The trace represents a momentum integration as
well as a summation over internal indices and G

�2�
k is the

exact inverse propagator given by the matrix of second
functional derivatives of the action with respect to bosonic
and fermionic field variables. We parametrize the infrared
cutoff
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where Zs,k , Zc ,k are wave function renormalizations. The
momentum integration in Eq. (1) is both infrared and ul-
traviolet finite. Equation (1) is an exact but complicated
functional differential equation which can be solved only
approximately by truncating the most general form of Gk .
Once a suitable nonperturbative truncation is found the
flow equation can be integrated from some short distance
scale L, where GL can be taken as the classical action, to
k ! 0 thus solving the model approximately.

The GN model is described in terms of a O�N� sym-
metric action for a set of N massless Dirac fermions. The
classical Euclidean action is given by
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Z
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(Here and in the following we distinguish with a bar the
dimensionful couplings.) The (pseudo)-scalar s�x� is an
auxiliary nondynamical field which can be integrated out
from the partition function, leading to the replacement
s�x� ! Ḡc̄�x�c�x�. Its vacuum expectation value s0
is proportional to the fermion condensate s0 � Ḡ�c̄c�.
The model is asymptotically free and perturbatively renor-
malizable in two dimensions, hence it exhibits a nontrivial
fixed point in d � 2 1 e. It is 1�N renormalizable in
2 , d , 4.
© 2001 The American Physical Society
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The NY model whose classical action is
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has a Gaussian fixed point in d � 4 where it is pertur-
batively renormalizable and a nontrivial fixed point in
d � 4 2 e. Both models have, in even dimensions, a
discrete chiral symmetry which prevents the addition of a
fermion mass term, while in odd dimensions a mass term is
forbidden by space parity. Performing a large N analysis,
the universal properties of the two models are argued to be
the same in 2 , d , 4 [3]; in such limit the two models
are equivalent in the scaling region if we rescale h̄s to s

and set Ḡ � h̄2�m2.
We consider a truncation of the effective action Gk

which contains a potential for the scalar field and a Yukawa
term. In momentum space it reads [
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The scalar potential is assumed to be a function of the
invariant s2�x�, and we make the further simplification
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The symmetric regime is characterized by the minimum
being at s

2
0k � 0. In the SSB regime a k-dependent mini-

mum s
2
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k � 0.
Inserting Eqs. (2) and (3) into (1), we obtain a set
of evolution or renormalization group equations (RGE)
for the effective parameters of the theory in the two
regimes. We find it convenient to work with dimension-
less quantities h2
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Here we have introduced the notation N 0 � 2g�2N with
2g�2 the dimension of the g matrices and y � q2�k2,
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the momentum dependence of the propagators at zero mo-
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Finally, the evolution equation for the Yukawa coupling
obtains from taking derivatives of Eq. (1) with respect to
c , c , and s:
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Equations (4)–(8) are valid in both regimes provided we set kk and ek appropriately.
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If we expand this set of equations in the coupling con-
stants we recover the one-loop results obtained in the
4 2 e expansion for the NY model [2]
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Moreover, after identifying the running coupling constant
of the GN model as G � h2

k�ek we also recover the one-
loop result obtained in the 2 1 e expansion for the GN
model [2]

≠tG � �d 2 2�G 2 �N 0 2 2�
G2

2p
1 O�G3� . (9)

We numerically evolve the flow equations (4)–(8) from
a large momentum scale L to k ! 0. The initial values
of the parameters are chosen in such a way that GL �
SGN : ZsL � 10210, ZcL � 1, h̄2

L � L, ḡL � 0, b̄L �
0. Then eL � �ZsLGL�21 is the only free parameter of
the theory and plays the role of the temperature. It has
to be tuned in order to be near the second order phase
transition. For the value eLcr corresponding to the critical
temperature Tc the flow ends in a fixed point with constant
ek . 0. The relevant parameter for the deviation form Tc

is de � eL 2 eLcr � H�T 2 Tc� with constant H.
In the symmetric (high T ) phase the fermions are

massless. Their fluctuations induce a nontrivial de-
pendence of Zs and the renormalized scalar mass
m2

R�k� � Z21
s �k�m2�k� on the scale k even away from

the phase transition. This contrasts with the standard
situation where the running of mR�k� essentially stops in
the symmetric phase once k becomes much smaller than
mR . The issue of critical exponents in a situation with
two different infrared cutoffs k and mR is therefore more
complex than usual. In a standard situation we would
define the exponents g and n by following the temperature
dependence of the unrenormalized and renormalized mass
m2�k� and m2

R�k� for k ! 0 [9]. Here we define the
renormalized mass at some fixed small ratio k�mR by
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R�kc� 2 m2
Rcr �kc�, kc � rcm̄R , (10)

with m2
Rcr �k� � ek2 on the critical trajectory. (In the nu-

merical simulations we fix the ratio rc to be equal to 0.01.)
This mass corresponds to the only relevant parameter char-
acterizing the critical behavior. It is directly related to the
deviation from the critical temperature de. We also define
the inverse susceptibility or unrenormalized mass by

m̄2 � m̄2
RZs�kc, m̄R� . (11)

Correspondingly, the critical exponents n and g are de-
fined for fixed rc
960
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From the definition (11) one has the relation

2n � g 2
≠ lnZs�kc, m̄R�

≠ lnde
. (13)

A typical form of Zs is

Zs 
 Z0

µ
m̄2

R 1 k2

L

∂2�1�2�h̄s
µ

k2

m̄2
R 1 k2

∂2�1�2�h2

,

and we conclude
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This is the usual index relation. The index h2, which van-
ishes in the standard situation, determines the dependence
of m̄2

cr �k, de� � m2
Rcr�k�Zs�k, de�. on rc. In Table I we

summarize the results obtained for N � 2, 3, 4, 12 in
d � 3 dimensions.

For a more detailed understanding of the scale depen-
dence we consider next the running of the renormalized
mass and unrenormalized mass with k. We define
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with m̃2
cr �k, de� � m2

Rcr �k�Zs�k, de�. The relation m2
R �

m2�Zs implies the index relation

ĝ � 2n̂ 2 hs , (17)

which differs from the usual relation g � n�2 2 hs�. For
both k and m̄R sufficiently small and k ¿ m̄R the indices
n̂, ĝ, hs , and hc approach constant values independent
of k and m̄R . We fix d � 3, N � 3, and

TABLE I. Critical exponents and amplitudes for different val-
ues of N, d � 3.

N 2 3 4 12

n 0.961 1.041 1.010 1.023
g 1.384 1.323 1.228 1.075

n�2 2 h̄s� 1.403 1.323 1.230 1.075
b 0.745 0.903 0.910 0.998

n

2 �1 1 hs� 0.750 0.890 0.903 0.991
An�L 0.007 0.016 0.009 0.014
Ag�L2 0.042 0.212 0.233 0.968
Ab�

p
L 0.007 0.008 0.005 0.007

hs 0.561 0.710 0.789 0.936
hc 0.066 0.040 0.027 0.007
h̄s 0.541 0.729 0.765 0.971

GLcr 9.989 5.325 3.613 1.006
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FIG. 1. Fermion-antifermion condensate as a function of the
�cc�2 coupling GL, in the range �3�4GLcr , 3�2GLcr �.

n̂ � 0.502, ĝ � 0.295, hs � 0.710, hc � 0.040 .

(18)

These values agree well with Eq. (17). In the oppo-
site regime, k ø m̄R , the running of the renormalized
mass is only due to the anomalous dimension hs

which is now different from the value (18). We find
n̂ � 0.500, ĝ � 0.000, hs � 1.000, hc � 0.000. Again,
these values agree well with Eq. (17) and the expectation
ĝ � 0. The nontrivial exponents n̂, hs in the NY
language correspond to the absence of renormalization
effects for Ḡk for k ! 0 in the GN language. We note
that for fixed de the renormalized scalar mass (which
corresponds to the inverse correlation length) scales as
mR � k for mR ø k and mR �

p
k for mR ¿ k. The

value of hs � 1 for k ø mR corresponds to h2.
We also have computed the (nonuniversal) critical am-

plitudes which describe the dependence of m̄R and m̄ on
the coupling GL of the GN model. Observing de�eLcr �
GLcrd�1�GL� we obtain, for small deviations from criti-
cality,

m̄R � An

Ç
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, m̄2 � Ag

Ç
dGL

GLcr

Çg
. (19)

In the low temperature phase the running of s0 stops for
small k and the complications of the symmetric phase are
absent. With s0 � limk!0 s0k one finds for small de

s0 � Ab

Ç
dGL

GLcr

Çb
. (20)

Our results, together with the scaling relation b �
n

2 �d 2

2 1 hs�, are reported in Table I.
In Fig. 1 we plot the condensate s0 as a function of GL.
For all N $ 2 the existence of a second order phase tran-

sition is confirmed by our analysis. As can be checked,
the scaling relations are well verified. To compare with
existing results obtained in the 1�N expansion, let us fix
N � 12. In [6] the critical exponents have been calcu-
lated to the order 1�N yielding n � 1.022, g � 1.068,
b � 1, hs � 0.955. In the same paper Monte Carlo
simulations for N $ 12 are also reported. Conformal tech-
niques have been used to calculate the anomalous dimen-
sions to O�1�N3� [5] and yield hc � 0.013, hs � 0.913.
In [10,11] the universality class of the GN model is inves-
tigated numerically. For N � 2 [10] they find n � 1.000,
g�n � 1.246, b�n � 0.877, and obtain compatible re-
sults for the NY model through a second order epsilon ex-
pansion. For N � 4 [11] they find n � 1.02, g�n � 1.19,
b�n � 0.89, and obtain consistent results for the NY
model at sufficiently strong Yukawa coupling.

The case N � 1 appears to be different from N . 1.
We find a phase transition. For small GL (large eL) Eq. (9)
is valid (N 0 � 2) and Gk scales according to its canonical
dimension. The model is in the symmetric phase. For
GL . GLcr , GLcr � 19.416 the mass term at the origin
of the potential becomes negative, indicating spontaneous
symmetry breaking. We find no scaling solution, neither
for ek $ 0 nor for kk $ 0. This may suggest a first order
transition.

In conclusion, a simple truncation of the exact flow
equation for the effective average action gives a consis-
tent picture for a second order phase transition for the GN
model with N $ 2 in three dimensions. We have com-
puted critical exponents and amplitudes, and we relate di-
rectly physical observables like the correlation length or
the order parameter to the value of the coupling G. By
choosing different initial conditions we have also explic-
itly verified that the Neveu-Yukawa model belongs to the
same universality class as the Gross-Neveu model.
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