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Supersonic Dislocation Kinetics from an Augmented Peierls Model
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The controversial issue of whether dislocations can travel faster than shear or longitudinal waves is
investigated. The Peierls model, modified to account for drag and gradient effects, furnishes a kinetic
relation between the applied shear stress and speed of uniformly moving dislocations. This relation
predicts intersonic and supersonic speeds at high enough stress, but also regimes of unstable motion, in
agreement with recent atomistic simulations.
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The propagation of dislocations, twins, and cracks in
solids at speeds higher than that of shear waves has long
been considered unlikely. This belief is based on predic-
tions of linear elastic models [1] that ignore nonlinearity,
nonlocality, and lattice discreteness, factors that play a cru-
cial role in defect structure and dynamics. Indeed, recent
experiments detected intersonic crack speeds [2] (between
the shear wave speed cS and the longitudinal wave speed
cL), while atomistic simulations predicted intersonic and
supersonic dislocations (faster than cL) [3,4]. Intersonic
twins have also been observed [5], simulated [6], and ana-
lyzed [7].

An important question raised by the pioneering studies
of dislocation dynamics [8,9] is whether the speed of
a moving dislocation can be determined as a function
of the applied stress. We show that the Peierls dislo-
cation model, augmented to include drag and gradient
effects in a simple way, determines an explicit kinetic
relation between the dislocation speed and the externally
applied shear stress. In the subsonic speed range, this re-
lation exhibits a low-speed, drag-dominated regime and a
high-speed relativistic regime in qualitative agreement with
experimental observations. Intersonic motion is predicted
to occur above a critical applied stress, but is unstable
below a critical speed. Supersonic propagation takes place
above a higher critical stress level. These results explain
recent observations of atomistic simulations [4] through
a physically simple, analytically tractable continuum-
mechanical model. The prediction of dislocation kinetics
is relevant to the dynamics of twinning, martensitic
transitions, and viscoplastic behavior of solids.

The Peierls model [10] is a continuum analog of a dis-
located crystal: two linear elastic isotropic half-spaces are
joined along a slip plane with a nonlinear interface law
s � f�u�, expressing shear traction s as a periodic func-
tion of slip displacement u. When applied to uniformly
gliding edge dislocations, it yields Weertman’s equation
[9] for the slip displacement u�x 2 yt�:

m

p
A�y�

Z `

2`

u0�z�
z 2 x

dz 1 mB�y�u0�x� 1 sappl � f���u�x���� .

(1)
0031-9007�01�86(1)�95(4)$15.00 ©
Here y $ 0 is the constant glide speed; we write x in
place of the moving coordinate x 2 yt; primes indicate
differentiation; f�u� � F0�u� is the derivative of a pe-
riodic interface potential F�u� with period the Burgers
vector b; m is the shear modulus; sappl is the externally ap-
plied constant shear stress parallel to the slip plane; letting
bi � j1 2 �y�ci�2j1�2, c1 � cL, c2 � cS , c3 �

p
2 cS ,

the functions A�y� and B�y� are given by
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They arise in the solution of the steady elastodynamic
problem in the half-spaces; A�y� is a relativistic con-
traction factor, complicated by the presence of two wave
speeds, and vanishes above cL; B�y� is the intensity of
shear and longitudinal shock waves emitted by the dislo-
cation core when y is above cS and cL, respectively, and
vanishes below cS . Solutions u�x� of (1) corresponding to
moving dislocations have limits

u�`� � u0, u�2`� � b 1 u0, u0�6`� � 0,

(3)
where u0 � const, f�u0� � sappl .

(4)

Necessary for stability of solutions is that the states u �
u0 far ahead of the dislocation and u � b 1 u0 far behind
it are statically stable, namely, f 0�u0� $ 0 [11].

The search for combinations of sappl and y for which
such solutions exist produces physically unappealing re-
sults, as we show next. The energy dissipation rate D for
the system is the rate of external work done by sappl mi-
nus the rate of change of the total elastic, interfacial, and
kinetic energy. A standard calculation shows that

D � Fy, F � sapplb 2 mB�y�
Z `

2`
�u0�x��2 dx .

(5)
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Here F is the driving force acting on the dislocation [12].
For subsonic motion (y , cS) B�y� � 0 and F reduces
to the Peach-Koehler force sapplb. On the other hand,
multiplying (1) by u0 and integrating gives [13]

sapplb � mB�y�
Z `

2`
�u0�x��2 dx , (6)

so that F and the dissipation rate D necessarily vanish for
all solutions of (1). This reflects the conservative nature
of the Peierls model: external work becomes elastody-
namic energy of radiated shock waves. Since B�y� � 0
for y , cS , Eq. (6) implies that subsonic motion would
occur at zero applied stress and at any speed below the
Rayleigh speed cR � 0.93cS [the subsonic surface-wave
speed, such that A�cR� � 0] [8]. The Peierls model lacks
a drag mechanism, which would provide the resistance
overcome by sappl to maintain motion when shock waves
are absent. It implies that dislocations would move at in-
tersonic speeds for arbitrarily small sappl [9]. It fails to
predict a reasonable kinetic relation (between sappl and
y) that should be monotone increasing for low subsonic
speeds as expected from experiments [14]. The model
does predict intersonic motion, but also that sappl � 0
when y �

p
2 cS , the special intersonic speed at which no

shock waves are emitted [B�
p

2 cS� � 0] [9]. It does not
allow for supersonic motion, recently encountered in atom-
istic simulations [4]. We address these issues by proposing
various extensions to the model.

Model 1.—We modify the interface law by adding a
rate-dependent term ā �u to f�u�; a � ācS�m . 0 is a
nondimensional viscosity parameter. Since �u � 2yu0,
this term is mainly active at the core; it is intended to ac-
count for phonon and electron drag [1] in a simple phe-
nomenological way. The interface law now reads s �
f�u� 1 ā �u. This replaces B�y� in (1) and (6) by

Ba�y� � B�y� 1 ay�cS . (7)

The driving force in (5) becomes F � āy
R`

2` u02 dx,
yielding a positive dissipation rate D � Fy. We make
the usual choice

f�u� � sth sin�2pu�b� ; (8)

sth � maxf�u� is known as the theoretical shear strength
[1]. A solution of the resulting version of (1) is

u�x� � u0 1 �b�p� �p�2 2 tan21�x�Dd�� , (9)

where d � mb�2psth, u0 satisfies (4), while the core-size
factor D and stress sappl are determined as functions of y:

D�y� � �A2�y� 1 B2
a�y��1�2, (10)

sappl�y� � sthBa�y��D�y� , (11)

with A, B, and Ba given by (2) and (7). When y � 0,
sappl � 0 and (9) reduces to the static Peierls solution [8]
with D�0� � 1�2�1 2 n�, where n is Poisson’s ratio. The
96
kinetic relation between sappl and y is supplied by (11);
it is equivalent to the relation F�y� � bsthay�D�y�cS

between the driving force in (5) and the speed.
In the subsonic range 0 # y , cS , sappl�y� is mono-

tone increasing for 0 , y , cR ; see Fig. 1(a). It ex-
hibits a low-speed drag regime; sappl�y� � hy�cS for
y ø cS , with drag coefficient h � 2�1 2 n�asth. As
y ! cR , sappl�y� increases steeply to the theoretical shear
strength sth due to relativistic effects [A�y� ! 0 as y !
cR]. These features of sappl�y� are consistent with ex-
periments [14]. For cR , y , cS , sappl�y� has nega-
tive slope. Also u0 is unstable, since one shows that
f 0�u0� , 0. Hence, motion in the range cR , y , cL

is unstable.
In the intersonic range cS , y , cL [Fig. 1(b)],

sappl�y� decreases from sappl�cS1� � sth to a minimum
at a speed y�, then increases again to sappl�cL� � sth.
This is due to the behavior of the shock wave intensity
B�y�, which has a minimum, and vanishes, at y �

p
2 cS .

For cS , y , y� motion is unstable [15]. Stable inter-
sonic motion occurs for sappl above the critical value
strans � sappl�y�� . 0 at speeds y� , y , cL. The
critical speed y� is always below

p
2 cS , but approaches

it, while strans ! 0, as the viscosity a ! 0. For a ø 1,
y� �

p
2 cS , while strans � 2asth. Thus strans . 0 due

to drag effects; wave effects increase sappl further for
y . y�. No supersonic motion is possible in this model
at stresses below sth with u0 stable [16].

Model 2.—A nonlocal dependence of the interface po-
tential on the slip displacement was considered in [17] in
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FIG. 1. The kinetic relation of model 1, sappl�sth versus
y from Eq. (11), for different values of viscosity a � 0.02,
0.1, 0.3, shown thicker for higher a. (a) Subsonic range
0 # y # cS . (b) Subsonic and intersonic range 0 # y # cL

(c3 �
p

2 cS).
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order to account for the nonlocality of atomic interactions,
which has a significant effect in the core due to high gra-
dients. We conjecture that nonlocal effects in the interface
law cause instantaneous information transmission along
the slip plane, thereby allowing supersonic dislocation mo-
tion. We extend model 1 to include a simpler but related
alternative to nonlocal effects. We let the interface poten-
tial be given by F�u� 1 �l̄�2� �u0�2, so that it depends on
the slip displacement gradient u0 in addition to u; here l̄

is a gradient coefficient. The interface law takes the form
s � f�u� 1 ā �u 2 l̄u00, with f�u� � F0�u�. The corre-
sponding augmented version of (1) is

m
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dz 1 mBa�y�u01

l̄u00 1 sappl � f�u� , (12)

with Ba given by (7). Solutions u�x� are subject to (3).
An explicit solution of (12) is unlikely with f�u� given by
(8). We replace (8) by a b-periodic sawtooth function [17]
satisfying

f�u� � 2sth�u�b 2 H�u�b 2 1�2��, 0 # u , b ;

(13)

H is the step function. Using Fourier transforms in (12),
and invoking (6), which remains valid with Ba from (7) in
place of B, we obtain

sappl�y� � sthBa�y�

3
Z `

0

�2�p� dj

�1 1 A�y�j 1 lj2�2 1 �Ba�y�j�2 ,

(14)

where l � 2l̄sth�m2b is a nondimensional gradient coef-
ficient [18]. The kinetic relation (14) for model 2 is shown
in Fig. 2. At fixed y, sappl depends decreasingly on the
gradient coefficient l [Fig. 2(a)] and increasingly on the
viscosity a [Fig. 2(b)]. The subsonic branch of sappl�y�
exhibits a drag-dominated regime, nearly linear up to 0.5cS

for a wide range of l values [14]. Then dsappl�dy in-
creases due to relativistic effects; it remains positive for
speeds beyond the Rayleigh speed cR , in contrast to the
situation in model 1. This stabilization is due to gradient
effects.

The intersonic branch of sappl�y� is somewhat similar
to the one predicted by model 1. It has a single mini-
mum at a speed y� depending on a and l. Stable in-
tersonic motion occurs for sappl above the critical value
strans � sappl�y�� at speeds y . y�, since for cS , y ,

y� dsappl�dy , 0 and motion is unstable. For small vis-
cosity a, y� is slightly below

p
2 cS , while strans � O�a�.

In contrast to model 1, as y ! cL, sappl�y� increases to a
value ssup � sappl�cL� below sth in the presence of gra-
dient effects (l . 0).

Supersonic motion occurs above the critical stress level
ssup � sappl�cL�. For y $ cL, Eq. (14) simplifies to
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FIG. 2. The kinetic relation of model 2, sappl�sth versus y

from Eq. (14) (c3 �
p

2 cS): (a) for viscosity a � 0.02 and
different values of the gradient coefficient, l � 0.02, 0.2, 1,
shown thicker for higher l; (b) for different values of viscosity,
a � 0.02, 0.2, 0.5, and l � 0.2, shown thicker for higher a.

sappl�y� � sthBa�y���4l 1 B2
a�y��1�2. (15)

When l � 0, sappl�y� � sth for y $ cL as in model 1.
For l . 0, sappl�y� is below sth and monotone increasing
[19]; supersonic motion is stable.

According to model 2, steady motion can be subsonic
only for sappl below strans. Above strans, a steadily mov-
ing dislocation has two speed choices: one subsonic and
one intersonic (or supersonic for sappl . ssup).

Since sappl approaches sth for speeds slightly below cS ,
the question arises whether an initially subsonic dislocation
can ever exceed cS . When impacted by a shock wave
raising the stress above strans, a dislocation behaves in a
highly transient manner, and need not follow the subsonic
branch of the kinetic relation, valid only for steady motion;
it is plausible that it will suddenly jump from the subsonic
branch to the stable intersonic one. Another possibility,
observed in the atomistic simulations of Gumbsch and Gao
[4], is that dislocations nucleating under high enough stress
immediately travel intersonically.

For a screw dislocation, model 2 yields a monotone ki-
netic relation, with sappl below sth even for y . cS , in
agreement with simulations [6]. For y . 0.5cS (including
supersonic speeds) this relation resembles one obtained by
Celli and Flytzanis [20] from a discrete model. Nonlo-
cality in model 2 seems to capture some of the effects of
discreteness in allowing supersonic motion.

Our predictions agree with atomistic simulations of
Gumbsch and Gao [4], who report subsonic dislocation
motion at or below an applied homogeneous shear strain
´ � 0.03, intersonic motion for 0.035 # ´ # 0.07, and
97
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FIG. 3. Comparison of the kinetic relation of model 2 with the
data of [4] (heavy points). Solid curve: sappl�m versus y from
Eq. (14) for the fitting parameters sth � 0.093m, a � 0.59,
l � 0.13.

supersonic motion for ´ $ 0.08. Lacking estimates of
the interface-law constants sth�m, a � ācS�m, and
l � 2l̄sth�m2b for the model system of [4], we used
them as fitting parameters in a numerical least-squares
fit of (14) to those data of [4] that were reported to
correspond to nearly uniform (stable) dislocation motion.
This procedure yielded sth � 0.093m, a � 0.59, and
l � 0.13 [21]. Equation (14) for these values, plot-
ted together with the data of [4], is shown in Fig. 3.
The linear elasticity of the Peierls model dictates that
sappl � m´. The data in Ref. [4] then imply that strans
lies in the range 0.03m 0.035m, and ssup in the range
0.07m 0.08m. Equation (14) predicts strans � 0.034m

and ssup � 0.078m, within these ranges. In [4], dislo-
cations with initial intersonic speeds of 1.25cS to 1.15cS

were reported to move unsteadily. Similarly, model 2
predicts a critical speed y� � 1.2cS below which inter-
sonic motion is unstable. These dislocations were subject
to stresses of 0.03m or less (below the predicted value
strans � 0.034m) and eventually slowed down to subsonic
speeds.

In view of the highly approximate nature of the aug-
mented Peierls model and the lack of estimates for the
interface-law parameters [21], the above comparison is
meant to illustrate only the qualitative agreement between
Eq. (14) and the results of [4]. As is clear from Fig. 2, the
general form of sappl�y��sth is the same for a wide range
of a and l values. Hence the prediction of intersonic and
supersonic motion at high stress is parameter independent,
and provides theoretical evidence that such processes are
possible in crystalline solids under severe loads.
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