VOLUME 86, NUMBER 5

PHYSICAL REVIEW LETTERS

29 JANUARY 2001

Front Propagation into an Unstable State of Reaction-Transport Systems
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We studied the propagation of traveling fronts into an unstable state of the reaction-transport systems
involving integral transport. By using a hyperbolic scaling procedure and singular perturbation tech-
niques, we determined a Hamiltonian structure of reaction-transport equations. This structure allowed us
to derive asymptotic formulas for the propagation rate of a reaction front. We showed that the macro-
scopic dynamics of the front are “nonuniversal” and depend on the choice of the underlying random

walk model for the microscopic transport process.
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The problem of propagating fronts traveling into an
unstable state of a reaction-transport system has attracted
considerable interest in the past years, because of a large
number of physical, chemical, and biological problems
which can be treated in this framework [1-6]. A generic
model which describes phenomena of this type is the
Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP) equation
for a scalar field p (7, x)

ap 0’p

= D5+ Upl - p), (1)
where D is a diffusion coefficient and U is a reaction rate
parameter. The FKPP equation was originally introduced
to investigate the spread of advantageous genes in a popu-
lation [7]. Since then it has been widely used in other
chemical and biological contexts to describe population
growth and dispersion, the spread of epidemics [2,3], com-
bustion waves [8], etc. The problem of front propagation
into an unstable state can be considered as a fundamental
problem in physics as well. Problems of this type arise
in studies of the propagation of a vortex front in an un-
stable fluid flow [9], propagation of domain walls in liquid
crystals [10], propagation of magnetic fronts in disk dy-
namos [11], as well as in models of aggregation and de-
position [12].

It follows from Eq. (1) that the state p = 0 is unsta-
ble while the state p = 1 is stable. The basic question of
interest is how fast front replacing the unstable state by
the stable one will move. Dimensional analysis gives a
simple answer to this question: the propagation rate u is
proportional to +/DU. The basic shortcoming of this es-
timation is that it gives an infinite speed of propagation
when the chemical reaction becomes very fast (U — ).
Recently, there has been a tremendous amount of activity
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model B:

PACS numbers: 82.20.Fd, 82.40.—g, 87.18.Pj, 87.23.Cc

in extending the analysis based on (1) by introducing
more realistic macroscopic descriptions of the transport
processes [13—17]. The main motivation for this is that
the diffusion approximation for transport admits an infinite
speed of propagation. Because of this unphysical property
of ordinary diffusion, the FKPP equation leads to the over-
estimation of the propagation speed of traveling fronts. It
should be mentioned here that there is a lot of literature
on the microscopic stochastic models for which the FKPP
equation can be regarded as the mean-field approximation
(see, for example, [18] and references therein).

In our opinion the fundamental deficiency of the FKPP
equation is that it involves implicitly a long-time large-
distance parabolic scaling while as far as the propagat-
ing fronts are concerned, the appropriate scaling must be
a hyperbolic one. It is well known that the macroscopic
transport process comes from the overall effect of many
particles performing complex random movements. Classi-
cal diffusion is just an approximation for this transport in
the long-time large-distance parabolic limit. What we are
going to show here is that, in general, this approximation
is not appropriate for the problems involving propagating
fronts. The basis idea is that the kinetic term in (1) is very
sensitive to the tails of a concentration/temperature pro-
file, while these tails are typically “nonuniversal,” “non-
diffusional,” and dependent on the microscopic details of
transport process. Our purpose is to demonstrate that the
macroscopic dynamics of the reaction front for a reaction-
transport system are dependant on the choice of the under-
lying random walk model for transport processes.

In this Letter we choose an alternative description of
reaction-transport processes; instead of equation (1) we
consider two models: model A, discrete in time, and

| model B, continuous in time

p(t,x + 2)e(z)dz + Uex)tp(t,x)[1 — p(t,x)], (2)

i—’t’ = )\|:f_oop(t,x + 2e(x)dz — p(t,x)} + Ulex)p(t,x)[1 — p(t,x)], 3)

where the reaction rate parameter U(ex) is a slowly varying function of the space coordinate x; & is a small parameter.
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These two equations provide a suitable coarse-grained de-
scription of the microscopic reaction and random spatial
spread with long-range interaction modeled by the kernel
©(z) [3]. We note that the integro-difference equations for
the description of growth-dispersal phenomena have also
been used in [13,19].

To understand the physical meaning of the parameters
7 and A and the function ¢(z) describing the transport
process in (2) and (3), one can consider the following
random walk models [20]. In model A the microscopic
transport process can be viewed as follows: The par-
ticle moves at regular time intervals 7 in the positive
or negative direction in accordance with the equation
Xt +71)=X@)+Z@#),t =n7,n=0,1,2,..., where
the jumps Z(t) are independent, identically distributed
random variables with the probability density function
given by ¢(z) = diZPr{Z (t) = z}. In model B the particle
moves as follows: Starting at the point x it spends a
random time » and then undergoes a jump Z, where Z
is a random variable having a given probability density
function ¢(z), taking the point x + Z. Again it spends
the random time » and jumps and so on. The random
time » between the jumps is exponentially distributed
with rate A.

Now the problem is to obtain a traveling front for (2)
and (3) and what is more to find the rate at which this
front moves. To ensure the minimal speed of propagation,
we consider here only the frontlike initial condition

p(0,x) = 6(x), 4)

where 6(x) is a Heaviside function: 6(x) = 1 for x = 0
and 6(x) = 0 for x > 0.

Since the exact solutions of these integro-differential
equations are not known, some sort of approximation is
needed. The conventional way to simplify the problem is
to approximate the integral term in (2) and (3) by the sec-
ond derivative of p with respect to the spatial coordinate
x and thereby to get the FKPP equation (1) (see, for ex-
ample, [3]). In what follows we show that, in general, this
approximation for a propagating front problem is not ap-
propriate and may lead to unphysical results.

In this Letter we shall discuss in detail the particular
case of both equations (2) and (3) when the kernel ¢(z) is

1 1
¢(Z)=E5(Z—a)+55(z+a). 5)
This case corresponds to the random walk model when the
jumps Z can take only two values —a or a with the equal
probability 1/2. Equation (2) takes the form

p(t + 7,x) = %p(z‘,x + a) + %p(t,x — a)
+ Ulex)7p(t,x)[1 — p(t,x)]. (6)

This is a typical example of a coupled map lattice de-
scribing a logistic map and spatial diffusion. It has been
extensively used in modeling traveling fronts and spa-
tiotemporal chaos (see, for example, [21]). In the limits

a — 0 and 7 — 0 such that D = a?/27 = const, we can
get from (6) the FKPP equation (1).

As far as traveling waves are concerned, the diffusion
approximation is not adequate, in general, since in the
limits @ — 0 and 7 — 0 we should keep the velocity v =
a/T constant rather then D = a?/27. It is clear from a
physical point of view that the velocity v = a/7 must be
the maximum possible rate of front propagation.

The technique to be used in this Letter to obtain the
traveling front for (2) and (3) involves a hyperbolic scaling,
exponential transformation, and a Hamilton-Jacobi formal-
ism. It is instructive first to consider the classical FKPP
equation (1) with frontlike initial condition (4). The tradi-
tional way to deal with the FKPP equation is to find the
traveling wave solution ¢ (x — ut) to the problem (1) and
(4). However, we can treat Eq. (1) like one of a meso-
scopic description of the reaction-transport process. The
basic idea introduced by Freidlin [4] is that in the long-time
large-distance macroscopic limit the detailed shape of the
traveling wave is not important and therefore the problem
of wave propagation is that of dynamics of a reaction front.

The hyperbolic scaling

X
t— —, x> =
& &

leads to the Cauchy problem for a rescaled scalar field
pe(t,x) = p(t/e,x/e),

ap® a%p?® 1
= eD + —Up°(1 — p9),
at e e P P

p°0,x) = 0(x).

It is easy to see from this equation that in the limit € — 0
the reaction rate is very fast and the diffusion is very slow
and therefore the solution p?® takes only two values 0 and
1 as € — 0. The problem now is to derive the equation
governing the position of the reaction front. If we now
replace p®(¢,x) by an auxiliary field G(¢,x) = 0 through
the exponential transformation

e <1 7

®)

pe(tx) = exp(——G(;’x)>, ©)
substituting (9) into (8) yields, to leading order, the classi-
cal Hamilton-Jacobi equation dG/dr + H(dG/dx) = 0,
with the Hamiltonian H(p) = Dp? + U. It follows from
(9) that the location of the reaction front x(f) can be
determined from a very simple equation G[r,x(¢)] = 0.
The solution of the Hamilton-Jacobi equation is G(¢,x) =
x2/(4Dt) — Ut, from which we easily find the position of
the reaction front x(¢) = ut, where the propagation rate
u = +/4DU.

Now we are in a position to investigate the problem of
the reaction front propagation for the integro-differential
Egs. (2) and (3). We expect that after rescaling (7)
the wave profile develops into the reaction front, that
is, p®(t,x) = p(t/e,x/€) tends to a unit step function
O(x — ut) as e = 0. Our goal now is to find a func-
tion G(¢,x) determining the position of the reaction
front, that is lim.—g p®(f,x) = 0 when G(¢,x) > 0 and

927



VOLUME 86, NUMBER 5

PHYSICAL REVIEW LETTERS

29 JANUARY 2001

lime—g p?(t,x) = 1 when G(¢,x) = 0. Again we seek a
solution to rescaled Eqgs. (2) and (3) in the exponential
form (9), so that G(z, x) obeys, to leading order in &, the
Hamilton-Jacobi equation

1
model A: H(p,x) = —ln[f
T

model B: H(p,x) = )\|:[

This result is of particular importance as it shows that
the reaction front dynamics for Egs. (2) and (3) must be
different than that for the classical FKPP equation (1).
This follows from the fact that the Hamiltonians (11) and
(12) governing the evolution of the action functional G
and thereby the dynamics of the front are different from
H = Dp? + U corresponding to the FKPP equation.

When the kernel ¢(z) is a superposition of two delta
functions as in (6) we have

model A: H(p,x) = %ln[cosh(ap) + U(x)7],
(13)
model B: H(p,x) = Alcosh(ap) — 1] + U(x).

(14)

Both Hamiltonians (13) and (14) involve the character-
istic velocities a/7 and aA which must be infinite un-
der the diffusion approximation. If U = const it follows
from a dimensional analysis that the front propagation
speed u can be found from the nondimensional equations:
falur/a,Ut) = 0 for model A and fg(u/Aa,U/A) = 0
for model B, where f4 and fp have to be determined. A
fundamental difference between two models (13) and (14)
with respect to propagating fronts is that discreteness in
time of the model A leads to finite propagation rate, while
model B admits an infinite speed of propagation in the
limit of fast reaction (U — ).

It is well known from classical mechanics that the
solution of the Hamilton-Jacobi equation can be written
as G(t,x) = f(t){p(s)dx/ds — H[ p(s),x(s)]} ds, where
x(s) and p(s) satisfy the Hamilton equations dx/ds =
0H/dp and dp/ds = —dH/dx with the conditions
x(0) = 0, x(z) = x. The rate u(z) at which the front
moves can be found as follows: Let us differentiate
G[t, x(¢)] = 0 with respect to . One can get dG/dtr +
u(t)oG/dx = 0 and therefore u(t) = H/p since
dG/dt = —H and G /dx = p.

To find an explicit expression for G(z,x) and thereby
the front position and its propagation speed, we restrict
ourselves in this Letter to the case when the reaction rate
parameter U = const. It should be noted here that if U(x)
is an increasing function of x it might induce an interest-
ing phenomenon in which the front jumps [4,16]. Since
the Hamiltonian H does not depend on the space coordi-
nate and time, the Hamilton equations give us H = const

928

96 +H<E,x>=0, (10)

ot 0x
where the respective Hamiltonians H(p,x) are given

| by

" explep)e()dz + U(x)r] (an
exp(zp)e(z)dz — 1:| + U(x). (12)

and p = const. By using the Hamilton equations we find
x(s) = sdH/dp and 0H/dp = x/t. The action func-
tional G corresponding to that of a free particle can be
written as

G(t,x) = px — H(p)t. (15)
Since the position of the reaction front is determined by the

equation G[t,x(¢)] = 0 and x(¢) = ut, we can find two
equations for the propagation rate u# and the momentum p

_90H  oH _ H(p)

u = ) = 7
ap ap P
By using the Hamiltonians from (11), (12), and (16),
we can write down the explicit expressions for the front
propagation rate u for both model A and model B

. [~ zexp(zp)e(2) dz

T 1 [ explp)ez)dz + U’
(17)

. (16)

model A:

]

model B: u= )\f zexp(zp)e(z) dz, (18)

where the momentum p is a positive solution of the equa-
tion pH'(p) = H(p).

With ¢(z) given by (5), we have [see the Hamiltonians
(13) and (14)] the following expressions for the velocity u:

a sinh(ap)
del A: = , 19
fmode " t[cosh(ap) + UrT] (19
model B: u = Aasinh(ap), (20)

where p is a positive solution of pH'(p) = H(p). An
essential feature of the formula (19) is that in the limit
U — o the propagation speed u — a/7 = const. This
contrasts with the FKPP equation for which u — % as
U — . However, model B (20) admits an infinite speed
of propagation when U — % due to the property that the
underlying random walk has of being continues in time.
Now let us discuss the main differences between the
FKKP equation and models A and B. First, the explicit
expression for the propagation rate u for models A and B
cannot be found from simple dimensional analysis as it is
in the FKPP equation case when u is proportional to /DU .
The main physical reason for this is that models A and B
involve the characteristic microscopic velocities, for ex-
ample, a/7 and aA. For the FKPP equation, the parabolic
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scaling makes these velocities infinite. The divergence of
the characteristic velocity of the microscopic transport pro-
cess under parabolic scaling indicates that the details of
these processes are irrelevant to the macroscopic behav-
ior of the front. This observation suggests the universal-
ity of front propagation in terms of the FKPP equation.
Notwithstanding the broad range of possible microscopic
transport processes, the universal feature is observed un-
der parabolic scaling. We can look at this reduction of
a “complex” microscopic transport to a diffusion process
as an application of the central limit theorem (CLT) [20].
The essence of the CLT and its importance for physics is
that a Gaussian distribution can be regarded as an “attrac-
tion point” for the arbitrary random walks models after a
parabolic scaling (see a discussion about CLT, universal-
ity, renormalization, etc., in a review [22]). The peculiar
feature of nonlinear term in (1)—(3) is the sensitivity to the
tails of the distribution of the scalar field p. However, it
is well known that, in general, the CLT gives a poor ap-
proximation for the tails [20]. An appropriate tool for the
estimation of the tails is the large deviation theory [4] that
involves a hyperbolic scaling (7) suitable for the problem
of front propagation. In this case we have a nonuniversal
behavior, namely, the macroscopic dynamics of the front
appears to be dependent on the choice of the statistics for
the microscopic transport process.

Regarding the correspondence principle, model A and
model B can be reduced to the FKPP equation in the case
when we neglect the characteristic times 7 and A~! com-
pared to U~!. As far as a reactive gas mixture is con-
cerned, the parameter 7U is very small indeed, since the
mean free path time 7 has a negligible duration in com-
parison with the average rate of chemical reaction U !, In
this case, the FKPP equation can be considered as a good
mean-field model for the front propagation. However, for
turbulent reaction-transport processes [23] and biological
applications such as population spread [13—15], the delay
time 7 or A~! might be the same order as U~'. Model A
and model B correspond to the cases when the microscopic
transport processes are described by Markov random walks
[20]. It should be stressed that our results can be applied
to a much larger class of reaction-transport equations than
the two models A and B we used in this Letter.

In summary, we have developed a Hamilton-Jacobi tech-
nique for the problem of wave propagation into an un-
stable state of the transport-reaction systems involving
integral transport terms. We have derived asymptotic for-
mulas for the speed of the reaction front. Our analysis does
not involve the use of a diffusion approximation for the
transport process. We have shown that the macroscopic dy-
namics of the reaction front for reaction-transport systems
are dependent on the choice of the underlying random walk
model for transport processes. The basic physical reason
for this is that the unstable state of a transport-reaction
system is very sensitive to the tails of a concentration/
temperature profile, while these tails are typically nonuni-

versal, nondiffusional, and dependent on the microscopic
details of transport processes.
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