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Persistent Entanglement in Arrays of Interacting Particles
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We study the entanglement properties of a class of N-qubit quantum states that are generated in
arrays of qubits with an Ising-type interaction. These states contain a large amount of entanglement
as given by their Schmidt measure. They also have a high persistency of entanglement which means
that �N�2 qubits have to be measured to disentangle the state. These states can be regarded as an
entanglement resource since one can generate a family of other multiparticle entangled states such as the
generalized Greenberger-Horne-Zeilinger states of ,N�2 qubits by simple measurements and classical
communication.
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The notion of entanglement has many facets. A modern
perspective is to regard it as a resource for certain com-
municational and computational tasks [1]. Related to this
viewpoint is the problem of identifying equivalence classes
of entangled states, and to find relations between these
classes. While for pure states of bipartite systems there is
a single “unit” of entanglement —the entanglement con-
tained in a Bell state [2]—it has recently become clear
that for systems shared by three and more parties there
are several inequivalent classes of entangled states [3–7].
Progress in the understanding of multiparticle entangle-
ment has been triggered [3,4] by giving explicit examples
of states that did not fit into existing classification schemes.
Generally speaking, a sufficiently rich phenomenology of
entangled states is needed. It helps us to refine entangle-
ment classification schemes and, arguably, to motivate
them in the first place.

In this paper, we introduce a class of N-qubit entangled
states which is different from both the Greenberger-Horne-
Zeilinger (GHZ) class and the recently introduced W class
of N-qubit states [3]. We also give an operational charac-
terization of these classes in terms of local measurements.
In one respect, the states we are going to describe resemble
the so-called maximally entangled GHZ states [8] of N
qubits, while in some other respect they are much more en-
tangled than the GHZ states. To characterize these states,
we introduce the notions of maximal connectedness and
persistency of entanglement of an entangled state. The
first notion emphasizes the possibility that, in an N-particle
state, even when the reduced density matrix of a subset of
particles is fully separable [7], it may still be possible to
project that subset of particles into a highly entangled state
by performing local measurements on the other particles
[supplemented with classical communication and local op-
erations (LOCC), if the particles are remotely separated].
The second notion relates the amount of entanglement in a
multiparticle system to the operational effort it takes (in
terms of local operations) to destroy all entanglement in the
system. The states we describe occur, for example, in the
quantum Ising model of spin chains and, more generally,
spin lattices. We will introduce the states in the con-
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text of this specific model; their entanglement properties,
however, are discussed in general terms by assuming, as
usual, that the qubits are distributed between remote par-
ties which can act only through LOCC.

Consider an ensemble of qubits that are located on a
d-dimensional lattice (d � 1, 2, 3) at sites a [ �d and in-
teract via some short-range interaction described by the
Hamiltonian

Hint � h̄g�t�
X
a,a0

f�a 2 a0�
1 1 s�a�

z

2
1 2 s�a0�

z

2
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Concerning the entanglement properties of the states we
are going to investigate, this interaction Hamiltonian is
equivalent to the quantum Ising model with H 0

int �
2

P
a,a0

1
4 h̄g�t�f�a 2 a0�s�a�

z s�a0�
z , where the indices a, a0

run over all occupied lattices sites. The coupling strength
is written as a product gf, where f�a 2 a0� specifies the
interaction range and the g�t� allows for a possible overall
time dependence. In this Letter, we confine ourselves to
next-neighbor interactions. A more general situation will
be reported in [9]. In the language of quantum informa-
tion, the interaction (1) realizes simultaneous conditional
phase gates between qubits at neighboring sites a and a0.
For an experimental realization see the discussion at the
end of the paper.

Consider first the one-dimensional example of a chain
of N qubits (“spin chain”) [10] with next-neighbor interac-
tion f�a 2 a0� � da11,a0 . Initially, all qubits are prepared
in the state �j0�a 1 j1�a��

p
2, where j0�a � j0�z,a and

j1�a � j1�z,a are eigenstates of �1 2 s�a�
z ��2 with eigen-

values 0 and 1, respectively. (This is the most interesting
situation; if they are prepared in states j0�a or j1�a, no en-
tanglement will build up.) The unitary transformation gen-

erated by (1) is U�w� � exp�2iw
P

a
11s

�a�
z

2
12s

�a11�
z

2 � with
w �

R
dt g�t�. For g�t� � g � const, U�w� � U�gt� is

periodic in time and generates “entanglement oscillations”
of the chain. For the specific values w � 0, 2p, 4p, . . . ,
the chain is disentangled, while for all other values of w,
it is entangled. For the values w � p, 3p , 5p, . . . , the
chain is in some sense maximally entangled, and we will
© 2001 The American Physical Society
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concentrate on this situation in the following. The state
can then be written in the form

jfN � �
1

2N�2

NO
a�1

�j0�as�a11�
z 1 j1�a� (2)

with the convention s�N11�
z � 1. The compact notation

employed in (2) is easily understood by multiplying out
the right-hand side. For N � 2, one obtains jf2� �
1
2 �j0�1s�2�

z 1 j1�1� �j0�2 1 j1�2� �
1
2 ���j0�1�j0�2 2 j1�2� 1

j1�1�j0�2 1 j1�2���� which is a maximally entangled state.
We may write it, up to a local unitary transformation on
qubit 2, in the standard form

jf2� � l.u.
1
p

2
�j0�1j0�2 1 j1�1j1�2� , (3)

where “l.u.” indicates that the equality holds up to a local
unitary transformation on one or more of the qubits [12].
Similarly, one obtains for N � 3, 4

jf3� � l.u.
1
p

2
�j0�1j0�2j0�3 1 j1�1j1�2j1�3� ,

jf4� � l.u.
1
2

�j0�1j0�2j0�3j0�4 1 j0�1j0�2j1�3j1�4

1 j1�1j1�2j0�3j0�4 2 j1�1j1�2j1�3j1�4� . (4)

While jf3� corresponds to a GHZ state of three qubits
[8], jf4� is not equivalent to a 4-qubit GHZ state [4].
More generally, the state jfN� and the N-qubit GHZ
state jGHZN � � 221�2�j0�1 . . . j0�N 1 j1�1 . . . j1�N � are
not equivalent for N . 3, i.e., cannot be transformed into
each other by LOCC as we shall see below.

How can we compare the entanglement properties of
jf4� and jGHZ4� in operational terms? Imagine that the
qubits are distributed between four remote parties, which
may perform, as usual, local operations and classical com-
munication. We observe the following: (a) The states
share the property that any two of the four qubits can
be projected into a Bell state by measuring the other two
qubits in an appropriate basis. In other words, the parties
may use either of the states jf4� or jGHZ4� to teleport [13]
a qubit between any of the four parties. (b) The states are
different in that it is harder to destroy the entanglement of
state jf4� than that of jGHZ4� by local operations. In fact,
it is impossible to destroy all entanglement of jf4� by a
single local operation, such as a von Neumann measure-
ment or complete depolarization of a qubit. For the state
jGHZ4�, in contrast, a single local measurement suffices to
bring it into a product state [14].

These observations motivate us to introduce the follow-
ing definitions. A local measurement in the following
means a von Neumann measurement on a single qubit.

Definition 1: (Maximum connectedness) The quantum
mechanical state of a set C � �1, 2, . . . , n� of n qubits is
maximally connected if any two qubits j fi k [ C can
be projected, with certainty, into a pure Bell state by lo-
cal measurements on a subset of the other qubits. Note
that the state obtained may depend on the outcome of the
measurements.

Definition 2: (Persistency) The persistency of entangle-
ment Pe of an entangled state of n qubits is the minimum
number of local measurements such that, for all measure-
ment outcomes, the state is completely disentangled.

Since we are concerned with only pure states, a disen-
tangled state means a product state of all n qubits [15].
Obviously, for all n-qubit states 0 # Pe # n 2 1.

Definitions 1 and 2 can be straightforwardly generalized
to arbitrary n-partite pure states. Note that the definitions
1 and 2 are invariant under the group of local unitary
transformations on any of the qubits [12].

In the sense of these definitions, both states jf4� and
jGHZ4� are maximally connected, while their persistency
is Pe � 2 and Pe � 1, respectively. More generally, for
the state jfN� we show that (i) it is maximally connected
and (ii) its persistency is Pe�jfN�� � bN�2c. Property (ii)
quantifies the operational effort that is needed to destroy
all entanglement in the qubit chain. We also note that (iii)
the persistency of the states jfN� is equal to their Schmidt
measure [16]: If one expands jfN� into a product basis
of the N qubits, the minimum number of terms in such
a generalized Schmidt representation [3,16] grows expo-
nentially and requires 2bN�2c product terms. In that sense,
the state jfN� of the qubit chain is indeed much more en-
tangled than most of the known N qubit states.

We now prove property (i). The cases N � 2, 3 are
trivial as the state is a Bell or a GHZ state, respectively.
For N . 3, the proof goes as follows. Let us denote
by j0�xj � �j0�j 1 j1�j��

p
2, j1�xj � �j0�j 2 j1�j��

p
2

the eigenstates of s�j�
x

. We first show that the qubits at
the ends of the chain, i.e., qubits 1 and N , can be brought
into a Bell state by measuring the qubits 2, . . . , N 2 1.
For easier bookkeeping, we use the notation jfN� �
j�1, 2, 3, . . . , N��chain. Then the state can be expanded
in the form j�1, 2, 3, . . . , N��chain � �j0�1s�2�

z 1 j1�1� 3

�j0�2s�3�
z 1 j1�2�j�3, 4, . . . , N��chain where we suppress

normalization factors. Measuring the operator s�2�
x

of
qubit 2, we obtain for the remaining (unmeasured)
qubits 1, 3, 4, . . . , N the state x2	e2j�1, 2, 3, . . . , N��chain �
��1 2 is

�1�
y ��

p
2, �s�1�

x 1 s�1�
z ��

p
2� j�1, 3, 4, . . . , N��chain

for the outcome e2 � �0, 1�, correspondingly. This state
is, up to the local unitary transformations specified in
the parentheses, identical to an entangled chain of length
N 2 1, and gives us a recursion formula. We can repeat
this procedure and measure qubit 3, and so on. We obtainNN21

j�2 �xj	ej j�j�1, 2, 3, . . . , N��chain � U1j�1, N��chain with
U1 [ �1, s�1�

x
, s�1�

y
, s�1�

z
� for N even and U1 [

��s�1�
x

6 s�1�
z

��
p

2, �1 6 is�1�
y

��
p

2� for N odd, up to a
phase factor. This is a Bell state. To bring any other
qubits j, k ( j , k) from the chain �1, 2, . . . , N� into a Bell
state, we first measure the “outer” qubits 1, 2, . . . , j 2 1
and k 1 1, k 1 2, . . . , N in the sz basis, which projects
the qubits of the remaining chain j, j 1 1, . . . , k into the
911
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state Uj ≠ Ukj� j, j 1 1, . . . , k 2 1, k��chain with Uj [
�1, s�j�

z �, Uk [ �1, s�k�
z �. A subsequent measurement of

the “inner” qubits j 1 1, . . . , k 2 1 will then project
qubits j, k into a Bell state, as shown previously.

To prove property (iii), we use the expansion j�1, 2, 3, . . . ,
N , N 1 1, N 1 2��chain � j�1, 2, 3, . . . , N��chain�j0�N11 2

j1�N11s�N�
z � �j0�N12 2 j1�N12s�N11�

z � which can be
written in the form jfN12� � jfN�j0�z,N11j1�x,N12 2

�s�N�
z jfN��j1�z,N11j0�x,N12. Denote the minimum number

of product terms in an expansion of jfN� by r . As this
number is invariant under local unitary transformations
[3,16], it is the same for the state s�N�

z jfN�. No term in an
expansion of jfN�j0�z,N11j1�x,N12 can be combined with
any term in an expansion of �s�N�

z jfN��j1�z,N11j0�x,N12
to a single product term, since any nontrivial linear com-
bination of j0�x,N11j1�z,N12 with j1�x,N11j0�z,N12 gives
a nonproduct state with respect to qubit N 1 1 and N 1 2.
The minimum number of product terms for an expansion
of jfN12� is thus equal to 2r . Since for N � 2, 3 we
have r � 2 [see (3) and (4)], it follows by induction that
r � 2bN�2c. In other words, the Schmidt measure PS�jfN��
[16] of jfN� is equal to log2�r� � bN�2c.

We now prove property (ii). An explicit strategy to dis-
entangle state (2) is to measure s� j�

z of all even numbered
qubits, j � 2, 4, 6, . . . , which can easily be verified. The
total number of these measurements is bN�2c, which gives
an upper bound to the persistency, i.e., Pe�jfN�� # bN�2c.
On the other hand, the Schmidt measure gives a lower bound
to the persistency. This can be seen as follows. Since jfN�
can be disentangled by Pe measurements, there exists an
expansion of the form jfN� �

P1
j1,...,jPe �0 jm

� j1�
1

�a1 3

jm� j2�
2

�a2 . . . jm
� jPe �
Pe

�aPe
jprod� j1,...,jPe�� where a1, . . . , aPe are

the measured qubits, jm� j1�
1

�a1 , . . . , jm
� jPe �
Pe

�aPe
the resulting

1-qubit states for the measurement outcomes j1, j2, . . . , jPe ,
and jprod� j1,...,jPe �� some (unnormalized) product states of
the remaining qubits. This expansion contains at most
2Pe product terms, and therefore PS # log2�2Pe � � Pe.
Together with (iii) we obtain PS�jfN�� � bN�2c #

Pe�jfN�� # bN�2c which proves property (ii).
Results (ii) and (iii) show that the persistency of entan-

glement of the state jfN� (2) coincides with its Schmidt
measure. This result also holds for the state jGHZN �. The
meaning of these two concepts is, however, not the same.
To illustrate this point, consider the so-called W state
discussed in Ref. [3], jWN � � N21�2�j1�1j0�2 . . . j0�N 1

j0�1j1�2 . . . j0�N 1 · · · 1 j0�1j0�2 . . . j1�N �. The Schmidt
measure of this state is equal to log2�N� which means that
the amount of entanglement contained in jWN � is smaller,
in fact, exponentially smaller, than in the state jfN�. The
persistency of jWN �, on the other hand, is given by N 2 1
[17] which means that the entanglement of jWN � is harder
to destroy by local measurements than that of jfN�. This
observation agrees with the findings of Ref. [3], who
showed that any state obtained from jWN � by tracing
over N 2 2 qubits is inseparable. Note, however, that,
912
different from jfN� and jGHZN �, the state jWN � is not
maximally connected.

In the remainder of the paper we will generalize some of
the results to dimensions d � 2 and d � 3, i.e., to qubits
arranged on a lattice. These cases are different from the
case d � 1 since there is no natural ordering of the qubits.
Therefore, the concept of a “chain” of qubits does not ap-
ply anymore. The natural generalization to higher dimen-
sions is a “cluster” C of qubits as in Fig. 1a. The precise
definition of a cluster is the following: Let each lattice site
be specified by a d-tuple of (positive or negative) integers
a [ �d . Each site a has 2d neighboring sites. If occupied,
these are the sites whose qubit interacts with the qubit at a.
The set A , �d specifies all sites that are occupied by a
qubit. Two sites a, a0 [ A are connected (in a topologi-
cal sense) if there exists a sequence of neighboring sites
that are all occupied, that is, �a�n��N

n�1 , A with a�1� � a
and a�n� � a0. A cluster C , A is a subset of A with
the properties that, first, any two sites c, c0 [ C are con-
nected and, second, any sites c [ C and a [ AnC are
not connected.

The quantum mechanical state of a cluster that is gener-
ated under the Hamiltonian (1) for w � p is

jF�C �
O
c[C

µ
j0�c

N
g[G

s�c1g�
z 1 j1�c

∂
(5)

with the choice G � ��1, 0�, �0, 1�� for d � 2 and G �
��1, 0, 0�, �0, 1, 0�, �0, 0, 1�� for d � 3, using the convention
that s�c1g�

z � 1 when c 1 g ” C (the qubit cannot be
entangled with an empty site). The special case of the 1D
chain (2) is obtained from (5) for the choice G � �1�.

The cluster states (5) satisfy the following set of eigen-
value equations:

KajF�C � kjF�C (6)

for the family of operators Ka � s
�a�
x

N
g[G<2G s�a1g�

z ,
a [ C , where G < 2G specifies the sites of all qubits
that interact with a, and s�a1g�

z � 1 when a 1 g ” C .
The eigenvalue k � 61 is determined by the specific

FIG. 1. (a) Entangled cluster C of two-state particles. Any two
qubits c0, c00 of the cluster may be projected into a Bell state by
measurements on other qubits of the cluster. (b) Generation of
a 16 qubit generalized GHZ state from state (5) of a 2D block
of 49 qubits. The GHZ state is simply obtained by measuring
the circled qubits in the appropriate basis (sx on the lines; sz
between the lines), and by subsequent 1-qubit rotations on the
remaining qubits.
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occupation pattern of the neighboring sites. For a 1

�G < 2G� , C , for example, k � �21�d . The operators
�Kaja [ C � form a complete set of commuting observ-
ables of which the cluster state jF�C is an eigenstate.

Equations (6) can be used to generalize some of the en-
tanglement properties from the 1D case to higher dimen-
sions. Here we just report the results. A detailed proof
will be given in a longer paper [9].

We find that all cluster states are maximally connected.
It is noteworthy that the property of maximal connected-
ness of jF�C does not depend on the precise shape of the
cluster, and not even on its topological characterization ex-
cept for being a cluster. Consider a cluster C and any two
qubits on sites c0, c00 [ C as in Fig. 1a. To bring these
qubits into a Bell state, we first select a one-dimensional
path P , C that connects sites c0 and c00 as in Fig. 1a.
Then we measure all neighboring qubits surrounding this
path in the sz basis. By this procedure, we project the
qubits on path P into a state that is, up to local unitary
transformations, identical to the state jFN � of the linear
chain. We have thereby reduced the two- and three-di-
mensional problem to the one-dimensional problem.

Equations (6) can also be used to calculate the persis-
tency, as they imply strict correlations among one-particle
measurements. These correlations can be used to minimize
the number of measurements required to project jF�C into
a product state. In general, the exact value of the persis-
tency depends on the shape of a cluster. For large convex
clusters, we can give the asymptotic result Pe�N � 1�2
where N ! ` is the number of qubits.

Entanglement is often regarded as a resource and thus
the question arises which states can be obtained from clus-
ter states by local operations and classical communication.
A particularly simple class of LOCC is obtained by re-
stricting oneself to projective von Neumann measurements
on selected qubits. We note without proof [9] that from
a block C of Ld qubits, one can obtain any state of the
form aj00 · · · 0�C 0 1 bj11 · · · 1�C 0 of any subset of qubits
C 0 , C > �2��d . For a � b � 1�

p
2, this includes, in

particular, the family of generalized (multiparticle) GHZ
states on this subset. An illustration is given in Fig. 1b.
Even though the thereby obtained states are highly entan-
gled, their Schmidt entanglement measure [16] is always
smaller than that of the original cluster state, and so the
total amount of entanglement decreases.

With the experimental progress in cooling and trapping
of neutral atoms, one has identified systems such as “op-
tical lattices” [18,19] in which the interaction (1) can be
implemented by cold atomic collisions [19] or other tech-
niques. These systems allow one, in particular, to switch
on and off the coupling g�t� between all qubits simultane-
ously by a manipulation of the parameters of the trapping
lasers. The unitary transformation U�w� [before Eq. (2)]
with w � p can thereby be realized by a single global
operation. This enables one, in principle, to create a vari-
ety of multiparticle entangled states such as jGHZM� with
M ¿ 3 by the entanglement operation U�w�, followed
by 1-qubit measurements and subsequent 1-qubit rotations
(compare Fig. 1b).

In conclusion, we have introduced a class of highly en-
tangled multiqubit states. The cluster states have a large
persistency of entanglement which quantifies the opera-
tional effort needed to disentangle these states. For the
chain of qubits in the state jfN�, we have shown that the
value of the persistency agrees with the Schmidt measure
of jfN�. In that sense, the state jfN� is indeed much more
entangled than most known N qubit states. The cluster
states can be regarded as a (scalable) resource for other
multiqubit entangled states, such as multiparticle GHZ
states. Experimentally, these states could be generated and
studied in optical lattices or similar systems.
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