
VOLUME 86, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 29 JANUARY 2001

898
Algorithm for Molecular Dynamics Simulations of Spin Liquids

I. P. Omelyan,1 I. M. Mryglod,1,2 and R. Folk2

1Institute for Condensed Matter Physics, 1 Svientsitskii Street, UA-79011 Lviv, Ukraine
2Institute for Theoretical Physics, Linz University, A-4040 Linz, Austria

(Received 10 April 2000)

A new symplectic time-reversible algorithm for numerical integration of the equations of motion in
magnetic liquids is proposed. It is tested and applied to molecular dynamics simulations of a Heisenberg
spin fluid. We show that the algorithm exactly conserves spin lengths and can be used with much
larger time steps than those inherent in standard predictor-corrector schemes. The results obtained for
time correlation functions demonstrate the evident dynamic interplay between the liquid and magnetic
subsystems.
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Computer experiments remain an important tool for the
prediction and theoretical understanding of various phe-
nomena in magnetic materials. The methods of Monte
Carlo (MC) and molecular dynamics (MD) were inten-
sively exploited over the years for the investigation of
phase diagrams, critical phenomena, scaling, and the dy-
namic behavior of lattice systems such as the Ising, the
XY , and the Heisenberg model [1–3].

The necessity to extend these studies to disordered mod-
els of magnetic liquids was motivated by a great amount of
additional physical properties arising when both spin (ori-
entational) and liquid (translational) degrees of freedom
are taken into account [4–9]. The computer experiments
for such systems have been restricted to MC simulations
[5,7] in which only static quantities could be calculated.
Dynamic phenomena, in particular, spin and density re-
laxations, and the effects connected with the mutual influ-
ence of magnetic and liquid subsystems can be investigated
in MD simulations. Our special interest to this problem
was also stimulated by the results obtained recently for a
Heisenberg fluid within the hydrodynamic theory [9]. One
of them was the prediction that the shape of magnetic dy-
namic structure factor can change qualitatively in compari-
son with the lattice model due to the coupling between the
subsystems.

Until now, there have been no attempts to simulate spin
liquids within the MD approach. This can be explained by
the absence of an efficient MD algorithm for handling the
corresponding equations of motion (EOM). The traditional
numerical methods [10] for solving differential equations
are unsuitable because they become highly unstable on
time scales used in MD simulations. As has been well
established for pure liquid systems [11,12], even standard
predictor-corrector schemes are not efficient because of
poor total energy conservation.

The properties of an acceptable algorithm for long-time
observations over a many-body system should be stability,
accuracy, speed, and ease of implementation. There exists
only a small group of integrators satisfying these criteria.
An important one is the velocity Verlet (VV) algorithm
[13,14] which allows a high accuracy with minimal costs
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in terms of time-consuming force evaluations. However,
the VV and other similar schemes [11,15] were designed
to simulate pure liquid dynamics. In the case of mag-
netic liquids the situation is more complicated since the
translational positions and momenta are coupled with spin
orientations in a characteristic way and, hence, all these
dynamical variables must be considered simultaneously.
This requires substantial revision of the liquid dynamic
algorithms.

Recently, new algorithms have been devised for spin dy-
namics simulations of lattice systems [16]. They are based
(like the VV integrator) on the Suzuki-Trotter (ST) decom-
position method and appear to be much more efficient than
predictor-corrector schemes. These algorithms are appli-
cable to spin systems if the decomposition on two (or sev-
eral) noninteracting sublattices is possible. However, they
cannot be used for models with arbitrary spatial spin dis-
tributions and, therefore, not for spin liquids.

In this Letter we develop the idea of using ST-like de-
compositions for spin liquid dynamics and derive the de-
sired MD algorithm. This allows quantitative measurement
of dynamical structure factors of a Heisenberg fluid. The
main result obtained (reflecting the influence of the liquid
subsystem on spin dynamics) is the identification of a new
propagative soundlike mode in the spectrum of collective
longitudinal spin excitations.

Consider a classical system composed of N magnetic
particles of mass m, described by the Hamiltonian [7,8]

H �
NX

i�1

mv2
i

2
1

NX
i,j

�F�rij� 2 J�rij�si?sj� . (1)

Here ri and vi are the translational position and velocity,
respectively, of particle i carrying spin si . The liquid po-
tential is denoted by F�rij�, andJ�rij� . 0 is the exchange
integral for a pair of spins with interparticle distance rij .
The classical approach treats si as a three-component con-
tinuous vector with a fixed length for each site i. We put
for convenience jsij � 1, so that J is measured in energy
units.
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In order to study the dynamic properties, the equations
of motion given by dr�dt � Lr�t� must be integrated
numerically, where

L �
NX

i�1

µ
vi ?

≠

≠ri
1 ai ?

≠

≠vi
1 �vi 3 si� ?

≠

≠si

∂

�
NX

i�1

�Lri 1 Lvi 1 Lsi � � Lr 1 Lv 1 Ls , (2)

is the Liouville operator, i.e., Lr � �r, H� with �, � being
the Poisson bracket; r � �ri , vi , si� denotes the full set of
microscopic phase variables; ai � fi�m and vi � 2gi�h̄
are the acceleration and local Larmor frequency, respec-
tively, with fi � 2

P
j� jfii��dF�rij��drij 2 dJ�rij��

drijsi ? sj�rij�rij and gi �
P

j� jfii� J�rij�sj being the
force and internal magnetic field. Note that the operators
Lr , Lv , and Ls act only on position, velocity, and spin,
respectively, and the quantum Poisson bracket was used
[8,16] to obtain Ls.

The solutions can be cast in the form r�t 1 h� �
eLhr�t� � e�Lr1Lv1Ls�hr�t�, where h is the time step.
Since the exponential propagator eLh cannot be evaluated
exactly, one introduces some approximations which take
advantage of the smallness of h. Assuming for the mo-
ment that spin variables are frozen, i.e., setting Ls ! 0, we
come to the usual (liquidlike) EOM. They can be solved in
a quite efficient way using the second-order VV integrator
[13,14] which is based on the ST formula e�Lr1Lv �h �
eLvh�2eLrheLvh�2 1 O �h3�. Taking into account the fact
that this formula is valid for arbitrary two operators and
unfreezing now the spin variables, we obtain immediately
e�Lr1Lv 1Ls�h � eLvh�2e�Lr1Ls�heLv h�2 1 O �h3�, where the
sum Lr 1 Ls was treated as one operator. The spin-
position subpropagator can further be decomposed in
a similar way, e�Lr1Ls�h � eLrh�2eLsheLrh�2 1 O �h3�,
resulting in a full propagation of the form

r�t 1 h� � eLvh�2eLrh�2eLsheLrh�2eLv h�2r�t� 1 O �h3� .
(3)

Note that other decompositions are also possible, but then
the local fields gi and/or forces fi have to be updated (the
most time-consuming operations) more frequently, which
reduces the efficiency of the computations.
The main idea of the decompositions is to obtain sub-
propagators which can be evaluated analytically. It can
be shown [14] that the position eLrt �

Q
i eLri t and ve-

locity eLvt �
Q

i eLvi t propagations represent shift opera-
tors, namely, eLri tri � ri 1 vit and eLvi tvi � vi 1 ait.
Since the components Lr and Lv (as well as Ls) do not
commute, such shifts must be performed in a rigorous or-
der [as specified by Eq. (3)] and applied to the current val-
ues of ri and vi within the time step.

The spin subdynamics is described in Eq. (3) by the
exponential operator eLsh. This operator has no simple
explicit form, because the Larmor frequency vi for each
particle depends in general on the orientations of all other
spins of the system. The explicit solution, nevertheless,
may be found as follows. Since all the partial components
Lsi do not commute each other, it is quite natural to find an
ST-like decomposition for the whole set of these operators.
This results in the expression

eLsh � eLs1 h�2 · · · eLsN21 h�2eLsN heLsN21 h�2 · · · eLs1 h�2, (4)

which constitutes an ST analog for an arbitrary number
of operators and is accurate to the same order O �h3� as
the terms already truncated. Again, other O �h3� decom-
positions may be introduced. However, only Eq. (4) will
lead to a scheme with a minimal number of local field
recalculations.

The problem is now considerably simplified because,
according to Eq. (4), each current value of si is updated
spin by spin at a fixed instantaneous Larmor frequency vi ,
and this case allows analytical solutions: eLsi tsi�t� �
Di�t, t�si�t�. Here Di�t, t� � I 1 Wi sin�vit� 1 W2

i �1 2

cos�vit�� denotes an orthonormal (DD1 � I) matrix
of rotation around axis vi on angle vit and Wi � W�v̂i�
is a skew-symmetric matrix (Wab � 2Wba) with
WXY � 2v̂Z , WXZ � v̂Y , WYZ � 2v̂X , and v̂ �
v�v. Since the decompositions used are correct within
an uncertainty of order O �h3�, the trigonometric func-
tions can be replaced by their rational counterparts (see,
e.g., [17]), cosj � �1 2 j2�4���1 1 j2�4� 1 O �j3�
and sinj � j��1 1 j2�4� 1 O �j3�, which maintain the
orthonormality of D and are more efficient for the com-
putations. Then the spin rotation reduces to
eLsi tsi�t� �

Ω
si�t� 1 �vi 3 si�t��t 1

t2

2

∑
vi���vi ? si�t���� 2

1
2
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∏æ ¡ ∑

1 1

µ
vit

2

∂2∏
. (5)
This completes the new algorithm.
We note that our basic EOM are time reversible and ex-

act solutions behave symplectically. As can be shown, the
algorithm derived reproduces these features, even though
the trajectories are generated with a limited accuracy. In-
deed, the initial propagator was decomposed [Eqs. (3) and
(4)] into subparts symmetrically, and, as a consequence,
the final expressions for ri , vi , and si will be invariant
with respect to the transformation h ! 2h. Furthermore,
simple shifts (applied separately in position and velocity
space) do not change the phase volume. These proper-
ties are very important for our purpose because, as is now
well established [11,14], the stability of an algorithm nor-
mally follows from its time reversibility and symplecticity.
Another nice property of the algorithm is its exact conser-
vation of spin lengths [rotations given by Eq. (5) do not
change the norm of vectors] that is crucial for the class of
models considered.
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In our MD study of the Heisenberg fluid, we have used
the Yukawa potential [7], J�r� � �es�r� exp��s 2 r��s�,
and a soft-core potential [11], F�r� � 4´��s�r�12 2

�s�r�6� 1 ´ at r , 21�6s and F�r� � 0 otherwise, for
the description of spin and liquid interactions with the
intensities e and ´, respectively. The function J�r� was
truncated at R � 2.5s and shifted to be zero at the trun-
cation point to avoid force singularities. The simulations
were carried out for N � 1000 particles (employing peri-
odic boundary conditions) at a reduced density n� �
Ns3�V � 0.6, a reduced temperature T� � kBT�e �
1.5 , T�

c (where T�
c 	 2.06 is the temperature of ferro-

magnetic transition [18]), a reduced core intensity ´�e � 1,
and a dynamical coupling parameter d � s�me�1�2�h̄ � 2.
This last parameter presents, in fact, the ratio ttr�ts, where
ttr � s�m�e�1�2 and ts � h̄�e are the characteristic
time intervals of varying translational and spin variables,
respectively. Since we are investigating a ferrophase
and dealing with a microcanonical (NVES) ensemble, a
nonzero magnetization of the system must be specified
additionally. This quantity was taken from our single
MC simulation [18], 
S�0�N � 0.6536 6 0.0001, where

 �0 denotes the canonical averaging. All test runs were
started from an identical well equilibrated configuration.
The recalculation of local magnetic fields [during spin
subdynamics (4)] took approximately the same processor
time as that of translational forces, spending in total
0.5 sec per step on the Origin 2000 workstation. It is
worth emphasizing that contrary to spin lattice dynamics
[16] (when auxiliary MC cycles are involved to generate
equilibrium configurations as initial conditions for the
EOM), the equilibration of our system can be performed
within NVES MD simulations exclusively (at the spec-
ified value for S � 
S�0). This is possible because
of the energy exchange between the spin and liquid
subsystems.

Symmetries of Hamiltonian (1) impose conservation
laws on the total momentum P � m

P
i vi , total spin

S �
P

i si , and total energy E � H. These three integrals
of motion cannot be conserved perfectly at the same time
within any approximate scheme known. This is a typical
situation in MD simulations. The MD results for the
total energy E� � E�e [subsets 1(a)–1(d)] and total spin
S [subsets 1(e)–1(h)] as functions of the length of the
simulations are presented in Fig. 1. Four time steps,
namely, h� � h�ttr � 0.001 25, 0.0025, 0.005, and 0.01,
were used to integrate the EOM (solid curves). These
results are compared with those obtained by us using
the well established Adams-Bashforth-Moulton (ABM)
predictor-corrector scheme [10] [dashed curves in subsets
1(a) and 1(b)]. As can be seen from Fig. 1(a), the ABM
integrator fulfills energy conservation up to a similar accu-
racy as our algorithm at the smallest time step h� �
0.001 25. However, for larger step sizes [see Fig. 1(b)]
the ABM scheme is unstable and, thus, cannot be used.
Note that very small step sizes are impractical because
900
FIG. 1. Reduced total energy E��t��N [(a)–(d)] and magne-
tization S�t��N [(e)–(h)] per spin as functions of the observa-
tion time obtained within the decomposition (solid curves) and
predictor-corrector [dashed curves in (a) and (b)] algorithms at
four fixed time steps: h� � 0.001 25 [(a),(e)], 0.0025 [(b),(f)],
0.005 [(c),(g)], and 0.01 [(d),(h)]. The values E��0��N and
S�0��N are plotted by the horizontal thin lines.

then too much time-consuming force and field evaluations
have to be done during the typical observation times.

No systematic drift in E�t� and S�t� was observed within
our algorithm at time steps up to h� � 0.01 over a length
of t�h � 100 000. The precision of the algorithm was
measured in terms of the ratio GE � �
�E�t� 2 E�0��2��

�U�t� 2 U�0��2��1�2 of total and potential (U) energy fluc-
tuations. Taking into account that for our system 
�U�t� 2

U�0��2�1�2�N � 0.0335, we have obtained GE � 0.12%,
0.28%, 0.98%, and 7.7% for the time steps h� � 0.001 25,
0.0025, 0.005, and 0.01, respectively. In order to repro-
duce properly the features of microcanonical ensembles
the ratio GE should not exceed a few percent. As we can
see, time steps of h� # 0.01 satisfy this requirement and,
thus, they can be used for precise calculations.

Note that the decomposition and ABM methods con-
serve the total momentum P to within machine accuracy.
The reason is that all velocities are updated simultane-
ously and the interparticle forces are evaluated exploiting
Newton’s third law. For similar reasons, the ABM integra-
tion maintains the total magnetization S (but it does not
conserve spin lengths). In our scheme the magnetization
is not conserved exactly. However, the fluctuations appear
to be very small [see Figs. 1(e)–1(h)] and lead to the val-
ues 
�S�t� 2 S�0��2�1�2�N 	 1027, 5 3 1027, 2 3 1026,
and 1025 at h� � 0.001 25, 0.0025, 0.005, and 0.01,
respectively.

The spectra F�k, v� �
1

2p

R`

2` F�k, t�e2ivt dt of the
spin-spin FL,T

ss �k, t� � 

P

i,j sL,T
i �0� ? sL,T

j �t�nij�k, t��,
density-density Fnn�k, t� � 


P
i,j nij�k, t��, and spin-

density FL
sn�k, t� � 


P
i,j sL

i �0�nij�k, t�� � FL
ns�k, t� time

correlation functions are shown in Fig. 2. The super-
scripts (L) and (T) refer to the longitudinal and transverse
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FIG. 2. Transverse (a) and longitudinal (b) spin-spin, density-
density (c), and spin-density (d) functions for a Heisenberg fluid
versus frequency v�. The curves corresponding to the wave
numbers k� � 1, 2, 3, and 5 are marked by “1,” “2,” “3,” and
“5,” respectively.

components of si with respect to the vector S, and
nij�k, t� � N21 exp�ik ? �ri�0� 2 rj�t���. These func-
tions were obtained within our decomposition integration
at h� � 0.005, and the microcanonical averaging 
 � was
taken over 100 000 steps for each of 10 independent
runs. A dimensionless representation has been used for
F��k, v� � F�k, v��ttr with v� � vttr, k� � k�kmin,
and kmin � 2p�V 1�3.

One peak can be identified for the function FT
ss�k, v�

at each wave vector k. This peak is very sharp at small k
and shifts to the right with increasing k. Such a quasipar-
ticle behavior should be associated with the existence of
transverse spin waves in the spin liquid. Up to three max-
ima were observed for the component FL

ss�k, v�. While
the first maximum at v � 0 corresponds to pure diffu-
sive processes, the position of the second one coincides
with that of the transverse spin wave peak, indicating the
possibility of propagating longitudinal spin waves as well
which, however, are damped much stronger. The origin
of the third maximum in FL

ss�k, v� can be explained by
the direct influence of the liquid subsystem on the spin
one, because its position coincides with a peak position in
Fnn�k, v�. This last peak should be associated with prop-
agative sound modes well established for liquid systems
[19], whereas a maximum of Fnn�k, v� at v � 0 repre-
sents the well-known diffusive heat mode. The function
FL

sn�k, v� behaves similarly to Fnn�k, v�. In general, the
results obtained are in good agreement with the predictions
of Ref. [9]. The additional possibility of longitudinal spin
wave propagations in magnetic liquids at sound frequency
can be considered as a new effect which has yet to be ob-
served experimentally. A similar effect was found also
[18] in our MD calculations performed for model (1) at a
higher temperature T . Tc at the presence of an external
magnetic field. Taking into account the theoretical results
of Ref. [9] allows us to state that in both cases considered
the Brillouin sound peaks appear in FL

ss�k, v� due to mag-
netostriction caused by spin ordering.

In conclusion, we list the chief advantages of the new
algorithm over existing numerical schemes: (i) time rever-
sibility and symplecticity; (ii) explicitness (no iteration);
(iii) exact conservation of spin lengths; (iv) much more
accuracy in total energy conservation. Moreover, its excel-
lent stability (allowing applications with much larger time
steps) may lead to a substantial improvement of the speed
of MD simulations for magnetic liquids. It can also be used
for lattices [then only Eqs. (4) and (5) must be employed]
with arbitrary structures. These and related problems will
be considered in a separate publication.

Part of this work was supported by the Fonds zur För-
derung der wissenschaftlichen Forschung under Project
No. P12422-TPH.

Note added.—For an algorithm developed for lattices
see [20]; for an algorithm which preserves all the conser-
vation laws see [21].
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