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Probing Bose-Einstein Condensation of Excitons with Electromagnetic Radiation
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We examine the absorption spectrum of electromagnetic radiation from excitons, where an exciton in
the 1s state absorbs a photon and makes a transition to the 2p state. We demonstrate that the absorption
spectrum depends strongly on the quantum degeneracy of the exciton gas, and that it will generally
manifest many-body effects. Based on our results we propose that absorption of infrared radiation could
resolve recent contradictory experimental results on excitons in Cu2O.
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The phenomenon of Bose-Einstein condensation has
attracted much attention in recent years, and many ex-
perimental groups have reported the formation of Bose-
Einstein condensates in vapors of alkali-metal atoms [1].
Excitons, bound states of electrons and holes in semi-
conducting materials, are other candidates for undergoing
this phase transition [2,3]. Since excitons are composite
particles consisting of two fermions, they are expected to
obey Bose-Einstein statistics in the limit where their ther-
mal de Broglie wavelength becomes comparable to their
interparticle spacing, provided that this spacing is much
larger than the exciton Bohr radius.

A lot of effort has been made in order to create a
Bose-Einstein condensate of excitons in Cu2O [4,5]. To
determine the density and the temperature in the above
experiments, the phonon-assisted recombination spectrum
was fitted to a Bose-Einstein distribution, which gave the
chemical potential and the temperature— two essentially
independent parameters. Given the total exciton mass, the
density was then evaluated to be on the order of 1018 cm23,
while the temperature was on the order of 20–30 K, higher
than the lattice temperature which was kept at about 5 K.
Therefore, according to this approach, the exciton gas
was very close to the phase boundary for Bose-Einstein
condensation, and the angular-momentum singlet-state
(para)excitons were the species reported to actually cross
the phase boundary.

More recent experiments [6] have, however, questioned
the older method of determining the density and the tem-
perature. In these experiments the number of excitons
was determined directly and, with a relatively reliable es-
timate of the volume of the exciton cloud, the density was
found to be 2 to 3 orders of magnitude lower, i.e., around
1016 cm23, where the exciton gas should show no sign of
quantum degeneracy.

One, therefore, needs to find a reliable method of deter-
mining the density and, in particular, the degree of quan-
tum degeneracy of excitons. In this study we propose that
measuring the absorption spectrum of infrared radiation
which induces transitions of the excitons from the 1s to
the 2p state can resolve the discrepancy. Our study is also
directly applicable to other systems, like excitons in quan-
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tum wells, and thus it could help resolve other experimen-
tal observations which are controversial [7].

Öktel and Levitov [8] have examined a similar problem
as the one we consider here, in the context of optical exci-
tations of hydrogen atoms and have studied the many-body
effects that show up in the absorption spectrum, for an ef-
fective contact potential between the atoms. Our approach
is equivalent to theirs in the limit of equal masses between
the excitons in the 1s and the 2p states. In another study
Pethick and Stoof [9] have considered a more general form
of the interatomic potential.

This Letter is organized as follows: We first consider the
case of an ideal exciton gas, and examine the relevant en-
ergy scales that enter the problem and also derive simple
expressions for the absorption spectrum. We then exam-
ine the problem of an interacting exciton gas within the
Hartree-Fock approximation and find that the interactions
can have a very drastic effect on the absorption spectrum.
Finally we present our results with the interactions in-
cluded, and show that infrared absorption can be used in
order to determine the degree of quantum degeneracy of
excitons, thus proposing an experiment which could re-
solve this issue.

Consider the process in which an exciton in the 1s
state, with momentum h̄k, absorbs a photon of momentum
h̄q, making a transition to the 2p state with momentum
h̄�k 1 q�. The conservation of energy in this process im-
plies that

e1s
k 1 h̄cq � e

2p
k1q , (1)

where e
i
k � Ei 1 h̄2k2�2mi with Ei being the binding

energy of the i state, and mi being the total exciton mass
in the state i. In Cu2O, m1s � 3m, where m is the electron
mass, is larger than the sum of the effective electron and
hole masses as a result of the small Bohr radius of the 1s
excitons, a1s

B � 5.3 Å, compared to the lattice constant
al � 4.26 Å [10]. On the other hand, the Bohr radius of
excitons in the 2p state a

2p
B is given by the hydrogenic for-

mula which yields �44 Å [10]. Since a
2p
B ¿ al , m2p is

expected to be equal to the sum of the effective electron
and hole masses, which is �1.68m. In Eq. (1) there
are two distinct energy scales, i.e., the energy separation
© 2001 The American Physical Society
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DE � E2p 2 E1s � 128.5 meV, and the thermal energy
h̄2k2�2m � kBT , which is of order 1–10 meV. Since
h̄cq � DE and h̄2k2�2m � kBT , we get that q�k �
DE�

p
mc2kBT � 1023. Therefore h̄2qk�2m � 1023kBT ,

and h̄2q2�2m � 1026kBT , which allows us to neglect the
corresponding terms in Eq. (1). Solving in terms of k2�q�,
we obtain

k2�q� � �2m1sm2p� �h̄cq 2 DE���m1s 2 m2p�h̄2, (2)

which gives the magnitude of the momentum h̄k of the ex-
citon in the 1s state that absorbs a photon with wave vector
q and gets excited to the 2p state. In this approximation,
for h̄cq � DE only the excitons with k � 0 can partici-
pate in the process; however, for a Bose-Einstein conden-
sate there is a macroscopic number of excitons with k � 0,
and therefore the absorption spectrum has a pronounced
peak, with a strong temperature dependence. To see this
more clearly, let us calculate the rate of this dipole-allowed
process of absorption of a photon. With the approximate
expression for the conservation of energy of Eq. (2), the
rate GT of noncondensed excitons in the 1s state absorb-
ing a photon and making the transition to the 2p state is
given by

GT �
2p

h̄

X

k
jMqj

2n1s
k �1 1 n

2p
k1q�fqd�h̄cq 2 DEk� ,

(3)

where Mq is the matrix element of this process, ni
k is the

distribution function of species i (1s or 2p excitons), fq
is the distribution function of the incoming photons, and
DEk � e

2p
k 2 e

1s
k . Neglecting the occupation number of

excitons in the 2p state, n
2p
k1q ø 1, and assuming that

the matrix element Mq is a constant, since the process is
symmetry allowed, for monochromatic radiation Eq. (3)
implies that

GT ~ �h̄cq 2 DE�1�2n1s
k0

u�h̄cq 2 DE� , (4)

where u�x� is the Heaviside step function, and the magni-
tude of k0 is given by Eq. (2). The above result expresses
the fact that the absorption spectrum is proportional to the
density of states times the distribution function calculated
at a wave vector with a magnitude given by Eq. (2).

For a Bose-Einstein condensed exciton gas with NC

excitons occupying the k � 0 state, the rate GC of the
same process is simply

GC �
2p

h̄
jMqj

2NC�1 1 n2p
q �fqd�h̄qc 2 DE� , (5)

or GC ~ NCd�h̄cq 2 DE�. Therefore the absorption
spectrum (which is proportional to the decay rate) of an
ideal Bose-Einstein condensed gas has a strong peak with
a height that scales as NC . However, as we show below,
the interactions can modify this picture drastically.
We thus turn to the more realistic problem of an inter-
acting Bose gas. We start with the Hamiltonian H [11],

H �
X

k
e1s

k a
y
kak 1

U11

2V

X

k,k0,q
a
y
k1qa

y
k02qak0ak

1
X

k
e

2p
k b

y
kbk 1

U12

V

X

k,k0,q
b
y
k1qa

y
k02qak0bk ,

(6)

where V is the volume of the gas. In the above Hamiltonian
we assume that the excitons interact with an effective con-
tact potential, with Uij � 2p h̄2aij�mij being the strength
of the effective two-body interaction. Here aij is the scat-
tering length for collisions between excitons in the states
i and j (1 for the 1s state, and 2 for the 2p state). The
reduced mass mij entering the above expression is given
by mij � mimj��mi 1 mj�. Also ak�bk� and a

y
k�by

k� are
annihilation and creation operators for an exciton with mo-
mentum k in the 1s�2p� state.

Let us now consider the ground state of the system with
N excitons, which we denote as j0� � jNC , Nk1 , Nk2 , . . . ,
Nke , . . .�, where Nki is the occupancy of a state with mo-
mentum ki . Initially we take all the excitons to be in the
1s state. Since we consider a Bose gas both in the normal,
as well as in the condensed regime, we assume that there
is one state that can get populated by a macroscopic num-
ber of excitons, NC , and thus NC can get as high as the
total number of excitons, N , whereas the Nki are of order
unity.

We now examine such a system when one creates excita-
tions of the excitons from the 1s to the 2p state with the ac-
tion of some laser pulse. If an exciton with momentum ke

is excited to the 2p state with momentum k0
e � ke 1 q,

where q is the wave vector of the laser light, since q is very
small, we shall assume that we have vertical transitions,
i.e., q � 0. We denote the excited states as jFexc,ke � �
jke; NC , Nk1 , Nk2 , . . . , Nke 2 1, . . .�, which are the basis
vectors of our problem. The number of such states is N 2

NC 1 1 � NT 1 1, where NT � N 2 NC is the number
of 1s excitons in states with k fi 0. The laser beam that
excites the excitons from the 1s to the 2p state creates a
superposition of the states jFexc,ke � [11]. Thus, in order
to determine the absorption spectrum, we consider the ma-
trix with elements Hi,j � �Fexc,ki jHjFexc,kj � 2 �0jHj0�.
One finds that

Hi,j � di,j�DEki 1 U11�nki 2 2n� 1 U12�n 2 nki �	
1 U12

p
nki nkj , (7)

where n � N�V and nki � n1s
ki

� Nki �V is the Bose-
Einstein distribution for the 1s excitons. Let Ci be the
components of an eigenvector with eigenvalue E. Start-
ing from the eigenvalue equation

PNT
j�0 Hi,jCj � ECi , we

solve in terms of Ci , multiply by
p

nki , and sum over

i. Eliminating the factor
PNT

j�0 Cj
pnkj from the result-

ing equation, the eigenvalues of Hi,j are then given by the
859
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roots of g�E� 2 1 � 0, where

g�E� �
NTX

i�0

U12nki

E 2 �DEki 1 U11�nki 2 2n� 1 U12�n 2 nki �	
. (8)

Distinguishing the condensed state �i � 0� from the other states �i fi 0�, Eq. (8) takes the following form in the thermo-
dynamic limit:

g�E� �
U12nC

E 2 �DE 1 U11�nC 2 2n� 1 U12�n 2 nC�	
1

NTX

ifi0

U12nki

E 2 �DEki 1 n�U12 2 2U11�	
, (9)
where nC � NC�V . In the above equation there are in
general three limiting cases, depending on the ratio of
the interaction energy nU12, to the typical kinetic energy
DEki 2 DE, which is on the order of the thermal energy,
kBT . In the limit nU12 ø kBT , one recovers the results
we found earlier for the ideal Bose gas. In the opposite
limit, nU12 ¿ kBT , the behavior of the system of exci-
tons is “collective.” A graphical solution of the eigenvalue
equation shows that in the condensed phase, where both
NC and NT are of order N , there are two strong modes,
which give rise to two peaks in the absorption spectrum.
There are also NT 2 1 solutions, which form a continuum
corresponding to single-particle excitations of the thermal
excitons. In the same limit nU12 ¿ kBT for a fully con-
densed gas as well as for a gas in the normal state, there is
only one mode, since then one has a one-component sys-
tem. Finally when nU12 � kBT the system behaves in a
“mixed” way. In addition, the limit jm1s�m2p 2 1j ø 1
is equivalent to the case nU12 ¿ kBT , and Eq. (9) reduces
to a quadratic algebraic equation, which gives the same re-
sult as the one derived by Öktel and Levitov in Ref. [8].

By adding a small imaginary part in g�E�, i.e., g�E 1

ih�, where finite h results in homogeneous broadening of
the energy levels, we calculate the corresponding imagi-
nary part of the susceptibility �g�E 1 ih� 2 1	21 obtain-
ing the absorption spectra shown in Fig. 1. Broadening
can be calculated from first principles [9]; however, in
the present study we assume small homogeneous broad-
ening, choosing h � 1022 meV to produce the graphs in
Fig. 1. The broadening of the energy levels is expected to
be small, and this can be seen by examining the three ba-
sic mechanisms which contribute to that, i.e., the exciton-
exciton elastic collisions, their scattering with the lattice,
and their radiative lifetime. The radiative lifetime of the
orthoexcitons in the 1s state t1s

o is �1025 s [6] and that of
the paraexcitons t1s

p is �1023 s. The radiative lifetime in

the 2p state t
2p
i is smaller by a factor of �kga

2p
B �2, since the

transition is dipole allowed, where kg is the wave vector
of the emitted photon. Since kg � Eg�h̄c, where Eg �
2.17 eV is the gap energy, kg � 1023 Å21. Therefore

t
2p
o � 1028 s, while t

2p
p � 1026 s. The exciton-phonon

scattering time is on the order of 1029 s [12]. Finally for a
density as high as 1018 cm23, the exciton-exciton scatter-
ing time is on the order of 10211 s [13], which turns out to
be the shortest possible time scale, giving an energy broad-
ening of less than 0.1 meV.

We now analyze the results shown in Fig. 1. To produce
these graphs, we made use of the results of Ref. [14], that
860
a11 � 2.1a1s
B for paraexcitons, and assumed that a11 �

10 Å. For the value of a12 very little is known and for
this reason we have considered both the case of positive
(left column in Fig. 1), as well as negative (right col-
umn in Fig. 1) values. The ratio ja12�a11j is expected
to be larger than 1, since a

2p
B � 44 Å, which is much
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FIG. 1. The absorption spectrum on a linear scale, as a func-
tion of the energy of the photon that is absorbed. The absorption
is in arbitrary units, but the scale is the same in all the figures.
The energy is measured in units of meV, and its zero is measured
with respect to DE. The scattering length a11 � 10 Å, the exci-
ton temperature is 10 K, and the density is 1016, 1018, 2 3 1018,
and 5 3 1018 cm23 from top to bottom. For the graphs on the
left, a12 � 20 Å, and for the ones on the right, a12 � 220 Å.
If m is the chemical potential of the gas, 2m�kBT � 3.7 in
(a6), and 5 3 1024 in (b6), while NC�N � 0.48 in (c6), and
0.79 in (d6).
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larger than a1s
B � 5 Å. We made the conservative choice

ja12�a11j � 2, although this ratio could be larger. We also
considered a temperature of 10 K for the exciton gas in
all the cases, and we varied the density from 1016 cm23 to
5 3 1018 cm23. With these values kBT � 1 meV, while
jnU12j is �1022 meV for n � 1016 cm23, and �5 meV
for n � 5 3 1018 cm23. Figures 1(a+) and 1(a–) show a
completely classical gas, and, since nU12 ø kBT , the sys-
tem behaves like an ideal gas. In Figs. 1(b+) and 1(b–)
the excitons are essentially on the phase boundary for
condensation and, since nU12 � kBT , the system is in
the mixed state where both collective and single-particle-
like behaviors show up. Figure 1(b–) shows these two
distinct types of excitation, while Fig. 1(b+) does not,
because the collective mode is buried inside the contin-
uum. In Figs. 1(c+) and 1(c–) the excitons are in the
condensed phase with NC�N � 0.48. This is the source
of the sudden appearance of the peak in Fig. 1(c+). In
Fig. 1(c–) in addition to the two peaks, there is a contri-
bution from the continuum that is hardly visible. Finally
in Figs. 1(d+) and 1(d–) NC�N � 0.79, and, since nU12
is about 5kBT , the spectrum is dominated by the collective
behavior, as the two peaks indicate. However, we remark
that the Hartree-Fock approximation does not capture ef-
fects due to condensate fluctuations which may be relevant
in the regime nU12 ¿ kBT . In addition, as pointed out by
Svistunov and Shlyapnikov [15], if the wavelength of the
probing beam is much larger than the interparticle spacing,
the system can exhibit a polaritonlike collective behavior.
In our study we have ignored these effects, since they are
expected to be washed out due to the fact that the typi-
cal detuning energy nU12 is much larger than the gap that
develops in the polaritonlike spectrum. This condition is
equivalent to a1s

B ø a12 that needs to be satisfied for our
analysis to be valid.

Let us now examine the possible experiment which
could be performed in order for these effects to be
explored. The energy of the absorbed radiation would
have to be in the infrared, with an energy of order
DE � 128.5 meV. The corresponding wavelength is
about 20 mm, and it is comparable to the size of the
cloud. Free-electron lasers provide tunable radiation in
this regime. It is important to mention that at such low
energies the crystal is transparent and the absorption of
radiation due to the process we study should be the domi-
nant mechanism. Our analysis requires that the infrared
pulse should be sufficiently long, so that its energy spread
is much less than the energy width of the structures shown
in Fig. 1. An advantage of the method we suggest is
that it provides an independent method of probing the
kinetic energy distribution of excitons. The difference
between the uppermost graphs in Fig. 1 and the lowest is
pronounced, and one should be able to distinguish clearly
the degree of degeneracy of the excitons. In addition, this
method does not depend on the strength of the phonon-
assisted recombination line of paraexcitons, which is very
weak, and since it is close to other much stronger lines,
observing this line is very hard [4–6].
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Note added.—Experiments like the one we propose here
have been performed recently under weak excitation con-
ditions; see, for example, Ref. [16].
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