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Coexistence of Superconductivity and Ferromagnetism in Ferromagnetic Metals
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We address the question of coexistence of superconductivity and ferromagnetism. Using a field theo-
retical approach we study a one-fermion effective model of a ferromagnetic superconductor in which
the quasiparticles responsible for the ferromagnetism form the Cooper pairs as well. For the first time
we solve self-consistently the mean-field equations for the superconducting gap and the spontaneous
magnetization. We discuss the physical features which are different in this model and the standard BCS
model and consider their experimental consequences.
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Recently an itinerant ferromagnet undergoing a super-
conducting transition was discovered in the heavy fermion
compound UGe2 [1,2] and the experimental studies have
revealed that the ferromagnetic state exists even below the
superconducting transition. This prompts the interesting
question of the possible many-body itinerant systems sup-
porting both types of broken symmetry.

The search for ferromagnetic superconductors goes back
to the 1960s when superconducting materials with mag-
netic impurities were studied [3]. The research in this di-
rection has led to the works of Larkin and Ovchinnikov
[4] and Fulde and Ferrell [5], who studied a simple model
of effective field theory of superconducting fermions cou-
pled to magnetic impurities and they described the phase
diagram of such a system.

In the recently discovered superconducting ferromag-
net UGe2, the electrons responsible for the ferrromagnetic
order are the same as those which participate in the Cooper
pair formation. Motivated by this we study a single spin- 1

2
fermion model. In this model the long range ferromag-
netic order is a consequence of a spontaneously broken
spin rotation symmetry, as opposed to the case of a metal
with ferromagnetic impurities. For the first time we solve
the self-consistent equations for the superconducting gap
and the magnetization simultaneously in the mean-field
approximation. We find that the state in which ferromag-
netism and superconductivity coexist has (i) a linear tem-
perature dependence of the specific heat and (ii) the inverse
static susceptibility vanishes at finite magnetization as op-
posed to the case of normal ferromagnetic metals.

Our model Hamiltonian is
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where cs��r� are the spin s fermion fields, �S �
1
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s �tss0cs0 is the spin field, ti are the Pauli matrices,
and m is the chemical potential. The exchange interaction
is ferromagnetic and the four-fermion interaction is
attractive.

The partition function of the model can be written as a
functional integral over the Grassmann fields c�t, �r� and
c̄�t, �r� [6]. We introduce a real vector field �M�t, �r� us-
ing the Hubbard-Stratonovich transformation of the ex-
change term and a complex scalar field f�t, �r� using a
Hubbard-Stratonovich transformation of the second term
in Eq. (1). The vector field describes the fluctuations of
the magnetization, while the complex scalar field describes
the superconducting fluctuations. Performing the Gaussian
integral over the fermionic fields we obtain the partition
function of the model as an integral over �M, f, and f̄,
which we calculate using the steepest descent around the
mean-field solutions �M � �0, 0, M� and D � g� f�. Here
M � 2�Sz� defines the magnetization of the system. The
mean-field equations are
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where Feff is the free energy of a theory with the effective
Hamiltonian
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Here the fermionic effective Hamiltonian Heff is obtained
after the Hubbard-Stratonovich transformations and setting
the fields at their mean-field values.

Next we diagonalize the effective Hamiltonian using a
Bogoliubov transformation. After the transformation the
new dispersion relations are
© 2001 The American Physical Society
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where ep � p2

2m� 2 m. Then the mean-field equations take
the form
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where na
p and n

b
p are the momentum distribution function

of the Bogoliubov fermions.
From Eq. (5) one sees that for M $ 0 (the convention

that we use here) Ea
p . 0 for all momenta p and therefore

for T � 0, na
p � 0. For E

b
p there are two possibilities.

When JM , 2jDj, E
b
p , 0 for all p and therefore n

b
p �

1 for all p. Substitution of this in Eq. (5) leads to M �
0. Therefore the only solution of the mean-field equa-
tions which allows for the coexistence of ferromagnetism
and superconductivity is in the case when JM . 2jDj

which we will assume. Then the equation E
b
p � 0 has

two solutions:
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The dispersion of the b fermion is positive when
p2

F , p , p1
F and is negative in the complementary

interval. With this in mind Eqs. (5) and (6) at T � 0 have
the form
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It is difficult to solve analytically these equations; how-
ever, when JM is greater, but close to 2D, p1

F is ap-
proximately equal to p2

F and therefore M is small as
follows from Eq. (8). In this case one can expand the
right-hand side (rhs) of Eq. (7) in the small parameterp

�JM�2 2 4jDj2 obtaining
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where pF �
p

2mm�. Substitution of these expressions in
Eq. (8) shows that in this approximation the magnetization
is linear in jDj, namely,
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where r � Jm�pF�4p2 and this expression is valid for
large r (i.e., MJ 2 2jDj ! 01).

As in the standard BCS theory of superconductivity, the
pairing of the quasiparticles occurs in the vicinity of pF ,
which must include the interval between p2

F and p1
F . Then

the integration in the first integral on the rhs of Eq. (9) is
limited to a shell of width 2L, i.e.,
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Here we have assumed that jDj fi 0, pF 1 L . p1
F , and

pF 2 L , p2
F .

Substitution of the approximate expressions for p6
F from

Eq. (11) in the second term on the rhs of Eq. (13) leads to
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Performing the integration in the above expression
we obtain
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Substitution of M from Eq. (12) leads to the expression for
the gap:
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In that approximation the solution is
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Along with the above nonzero solution, describing the
coexistence of ferromagnetism and superconductivity,
there is a solution with a vanishing gap describing a
normal ferromagnetic state. For the transition from
the normal ferromagnetic state to the superconducting
ferromagnetic state to take place the energy of the former
state must be lower than the energy of the latter state.
One can calculate the difference between the two energies
using the standard integral representation [7], namely,
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Z g

0
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where HBCS is the BCS part of the Hamiltonian in Eq. (1).
Using Eq. (16) we transform the integral from an integral
over ḡ to an integral over the gap and performing the
integration we obtain
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m�pF

4p2 jDj2. (20)
847
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This shows that the superconducting ferromagnetic state
has lower energy than the normal ferromagnetic state and
therefore will be realized at low enough temperature.

In the case of magnetic impurities interacting with con-
duction electrons (RKKY interaction) one considers the
magnetization as an external parameter, independent of the
superconducting gap. In that case [8] the normal ferro-
magnetic state has lower energy than the superconducting
ferromagnetic state and ferromagnetism and superconduc-
tivity do not exist. In the case of ferromagnetism which
results from a spontaneously broken spin rotation symme-
try the magnetization and the gap are related through the
system of Eqs. (7) and (8) [see also Eq. (13)] and this leads
to ouř new result; i.e., the superconducting ferromagnetic
state will appear at low temperature.

When the magnetization increases the domain of inte-
gration in the second integral on the rhs of Eq. (12) can
exceed the size of the domain around pF in which the
pairing occurs and which is the integration domain in the
first integral of the same equation. In that case the sec-
ond integral dominates and this leads to the absence of
solutions with a finite gap. Taking the limiting case when
the two integration domains are equal, i.e., pF 1 L � p1

F
and pF 2 L � p2

F , where p6
F are the values of the mo-

menta from Eq. (10) with D � 0, we obtain the critical
value of the magnetization
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above which the superconductivity disappears even for an
attractive four-fermion interaction.

Next we calculate the distribution functions n"
p and n#

p
of the spin-up and spin-down quasiparticles. In terms of
the distribution functions of the Bogoliubov fermions these
momentum distribution functions are
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where u2
p and y2

p are the coefficients in the Bogoliubov
transformation. They have the same form as in the
BCS theory.

At zero temperature na
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The functions are depicted in Fig. 1.
The appearance of the Fermi surfaces of the Bogoliubov

fermion b is unexpected in the superconducting phase, but
it is a necessary condition for the existence of itinerant
ferromagnetism. Therefore in the case of coexistence of
superconductivity and ferromagnetism caused by the same
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FIG. 1. The zero temperature momentum distribution func-
tions for spin-up and spin-down fermion.

quasiparticles the existence of the two Fermi surfaces is a
generic property of this state. These Fermi surfaces are
reflected in the spin-up and spin-down momentum dis-
tribution functions as well as in the anomalous Green’s
functions. It is easy to show that the anomalous Green’s
function,
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momentum p is between the two Fermi surfaces p2
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and p1

F .
The existence of the Fermi surfaces leads to differ-

ent thermodynamic properties of the system, compared
to the standard BCS theory. The specific heat has a lin-
ear temperature dependence at low temperatures as op-
posed to the exponential decrease of the specific heat in the
BCS theory:
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is the sum of the density of states on the two Fermi surfaces
of the Bogoliubov fermion b. When the magnetization is
small, from Eqs. (10) and (11) follow that the density of
states increases with r as N�0� ! m�

2p2 rpF , as opposed to
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the case of ordinary weak ferromagnets, where the density
of states is N�0� �

m�

2p2 pF in this limit. Hence, the specific
heat is large even at very low temperatures. In the case of a
superconductor in an external magnetic field [3] although
there are gapless fermionic excitations the specific heat is
not linear as opposed to our case. This can also be con-
trasted with some of the unconventional superconductors
which have power law dependence of the specific heat on
the temperature, depending on the nodal structure of the
gap function.

Another consequence of the existence of the Fermi sur-
faces is the existence of paramagnons which describes the
longitudinal spin fluctuations [9]. They exist in ferromag-
netic normal metals and in our theory they survive even in
the ferromagnetic superconducting phase. Their propaga-
tor is given by
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where a, b, and d are constants. The constant
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defines the analytical properties of the paramagnon and is
different from zero because of the existence of the Fermi
surfaces. The constant d is

d � 1 2
J
2

N�0� (31)

and b is a positive constant. As we mentioned earlier, the
density of states, Eq. (22), increases as the magnetization
M decreases and therefore, at a small, but finite value of
the magnetization, M � M0, the inverse of the static sus-
ceptibility, d, becomes zero. This is a quite different be-
havior from the one in weak ferromagnetic metals where
d becomes zero at zero magnetization. This observation
is important, because in contrast to the spin waves and su-
perconducting fluctuations which are a consequence of the
spontaneously broken symmetry, the paramagnon is not a
consequence of the broken symmetry but depends on the
properties of the metal under consideration. In the case
of the coexistence of the superconductivity and ferromag-
netism the superconductivity prevents the magnetization
from becoming arbitrarily small, because when the magne-
tization is smaller than the critical value M0, d is negative
and the paramagnon fluctuations lead to an instability of
that phase. In the superconducting phase, with zero mag-
netization (BCS-like regime) the spin fluctuations of the
paramagnon type are absent.

In this paper we considered the possibility of the coex-
istence of ferromagnetism and superconductivity and the
physical features of such a system. We arrived at a system
of self-consistent equations for the magnetization and the
superconducting gap and solved analytically these equa-
tions at small magnetizations. This is the first time a
mean-field theory was found with coexisting ferromag-
netism and superconductivity. The solutions with coex-
istence of superconductivity and ferromagnetism describe
Bogoliubov fermions one of which has two Fermi surfaces.
Therefore the spin-up and spin-down quasiparticles have
two Fermi surfaces each. The thermodynamic properties
of the coexistence phase are different from the standard
BCS theory. The specific heat has a linear temperature de-
pendence as in normal ferromagnetic metals, but increases
anomalously at small magnetizations. These results are ob-
tained in a mean-field approximation, but they are generic
for the coexistence state and can be used as a starting point
for calculations beyond mean field. In our model the quan-
tum critical point is dressed; i.e., the superconducting state
occurs at zero magnetization, because the superconducting
gap is generated not by the spin fluctuations, but by some
other means. This is to be contrasted with the theory of
spin fluctuation mediated pairing in weak ferromagnetic
metals [10] where the quantum critical point is naked and
the superconducting ferromagnetic critical temperatures go
to zero at the quantum critical point.

N. I. K. and K. S. B. were sponsored by U.S. National
Science Foundation Grant No. INT9876873. K. B. B.
and P. B. L. were sponsored by EPSRC Grant
No. GR/L55346. K. S. B. was partly sponsored by
DOE Grant No. DEFG0297ER45636.

*Present address: Department of Physics, Boston College,
Chetsnut Hill, MA 02167.

[1] S. S. Saxena et al., Nature (London) 406, 587 (2000).
[2] P. Agarwal et al., in Proceedings of the APS Meeting,

Minneapolis, 2000 (American Physical Society, College
Park, MD, 2000).

[3] A. A. Abrikosov and L. P. Gorkov, Zh. Eksp. Teor. Fiz. 39,
1781 (1960) [Sov. Phys. JETP 12, 1243 (1961)].

[4] A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz.
47, 1136 (1964) [Sov. Phys. JETP 20, 762 (1975)].

[5] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
[6] J. W. Negele and H. Orland, Quantum Many-Particle Sys-

tems (Addison-Wesley, New York, 1988).
[7] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-

Particle Systems (McGraw-Hill, Inc., New York, 1971).
[8] A. A. Abrikosov, Fundamentals of the Theory of Metals

(North-Holland, Elsevier Science Publishers, B.V., Am-
sterdam, 1988) (see Eqs. 21.16–20).

[9] T. Izuyama, D. J. Kim, and R. Kubo, J. Phys. Soc. Jpn. 18,
1025 (1963).

[10] K. B. Blagoev, J. R. Engelbrecht, and K. S. Bedell, Philos.
Mag. Lett. 78, 169 (1998); Phys. Rev. Lett. 82, 133 (1999).
849


