
VOLUME 86, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 29 JANUARY 2001

842
Size-Dependent Grain-Growth Kinetics Observed in Nanocrystalline Fe
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Measurements of grain growth in nanocrystalline Fe reveal a linear dependence of the grain size on
annealing time, contradicting studies in coarser-grained materials, which find a parabolic (or power-law)
dependence. When the grain size exceeds �150 nm, a smooth transition from linear to nonlinear growth
kinetics occurs, suggesting that the rate-controlling mechanism for grain growth depends on the grain
size. The linear-stage growth rate agrees quantitatively with a model in which boundary migration is
controlled by the redistribution of excess volume localized in the boundary cores.
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Since the network of grain boundaries in a polycrys-
talline material is a source of excess energy relative to
the single-crystalline state, there is a thermodynamic driv-
ing force for reduction of the total grain-boundary area
or, equivalently, for an increase in the average crystal-
lite (grain) size R̄ [1]. According to classical models for
the technologically important process of grain growth, the
rate at which R̄ increases is governed by the intrinsic
grain-boundary mobility, which depends strongly on tem-
perature, and by such factors as defect concentrations,
second-phase precipitates, and the segregation of impurity
atoms to the boundary cores [1,2]. Since all of these pa-
rameters are independent of R̄, the classical models assume
that a single growth mechanism is rate controlling at all
length scales.

Measurements of grain-growth kinetics in conventional
polycrystalline samples (R̄ * 1 mm) have uncovered no
exceptions to the latter assumption; however, studies per-
formed in nanocrystalline materials (R̄ & 100 nm) have
found the growth rate to be much slower than that entailed
by an extrapolation from the coarse-grained regime [3,4].
The prevailing view has attributed this unexpected slow-
down to the solute drag resulting from impurities intro-
duced during the preparation of nanocrystalline samples.

It, therefore, comes as a surprise that recent theo-
retical considerations present a compelling case for an
enhanced intrinsic stability with respect to coarsening in
materials with nanometer-sized grains, even in the absence
of significant impurity concentrations [5–9]. These theo-
retical models posit the existence of a critical grain size
R̄c —generally thought to lie in the submicron range—be-
low which the rate-controlling step for grain-boundary
migration is not the boundary-curvature-driven diffusion
of atoms across and along the boundary cores (as in
conventional, coarse-grained materials [2]) but rather the
migration and/or rearrangement of other features associ-
ated with the grain boundaries, like the triple junctions
(intersections of three or more grain boundaries) [5,6] or
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the excess volume localized in the core regions [7–9].
A feature common to such models is the prediction of a
linear dependence of R̄ on annealing time t when R̄ , R̄c

and a crossover at R̄ � R̄c to the nonlinear growth kinetics
familiar from studies of grain growth in conventional
materials [1,2]. The models differ, however, with respect
to the predicted temperature dependence of the small-R̄
growth kinetics, because the latter depends sensitively on
details of the rate-controlling step for boundary migration.
By exploiting this difference, one may be able to distin-
guish experimentally between competing models for grain
growth in nanocrystalline materials.

The goal of the experiments described in this Letter
was to test the predictions of these new models by per-
forming detailed measurements of grain-growth kinetics
in a highly pure, elemental nanocrystalline sample. To
this end, nanocrystalline Fe was prepared using the tech-
nique of mechanical attrition [4,10]. The initial powder
(99.991% metallic purity) was purified by annealing un-
der hydrogen gas and then milled for 24 h under Ar in
a SPEX 8000 mixer/mill outfitted with a steel vial and
balls, a procedure that produced fully dense powder par-
ticles exceeding 50 mm in diameter, each containing crys-
tallites (grains) with an average (area-weighted) size R̄
of 35 nm. The total impurity concentration of the milled
powder was less than 0.3 at. % (primarily oxygen). Al-
though it is possible to study the isothermal time evolution
of R̄ in such a sample by means of the same method used
to measure grain growth in conventional materials —se-
quential steps of annealing followed by microstructural
characterization via optical or electron microscopy — this
would not provide the high time resolution necessary to
establishing the functional form of R̄�t� during the initial
stage of grain growth or the occurrence of a change in
functional form at R̄c. We have found that such informa-
tion can be obtained by means of a novel x-ray diffraction
method that exploits the high angular resolution and high
intensity of the powder-diffractometer beam line BM16 at
© 2001 The American Physical Society
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the European Synchrotron Radiation Facility (ESRF) [11].
Samples of ball-milled Fe powder sealed in quartz capil-
laries were heated in situ by a hot-air blower while a multi-
channel detector was scanned continuously over an angular
range encompassing the first four Bragg peaks. The aver-
age grain size in the sample could be determined by means
of a Fourier analysis [12–14] of the (110) and (220) peak
profiles at time intervals as short as 2 min. In this manner it
was possible to gain near-real-time grain-size information
during the initial stage of grain growth in the nanocrys-
talline powder at several different annealing temperatures.

The isothermal evolution of the grain size in ball-milled
Fe is plotted for several annealing temperatures in Fig. 1.
Within the first 2 min of annealing, R̄ increases rapidly to
nearly twice the as-milled grain size; owing to the ther-
mal equilibration time of about 5 min, this initial growth
spurt could not be characterized more precisely. We ignore
it in the subsequent analysis for reasons discussed below.
Following the initial jump in R̄, the growth rate slows sub-
stantially and appears to take on an approximately linear
time dependence at all grain sizes below about 150 nm.
Above this grain size, the growth rate slows further, and
the R̄�t� curves manifest the nonlinear power-law behavior
characteristic of curvature-driven grain growth in conven-
tional materials [1,2].

We will see shortly that these results are in quantitative
agreement with the predictions of a model developed by
Estrin and colleagues [7–9] contending that, at sufficiently
small grain sizes, the rate-controlling step for boundary mi-
gration becomes the transport of excess volume away from
the moving boundaries. We now summarize the main fea-
tures of this model before examining its consistency with
the measurements of Fig. 1. Because the core of a grain
boundary is less dense than its adjacent crystalline regions,
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FIG. 1. Isothermal evolution of R̄ in ball-milled, nanocrys-
talline Fe at the indicated annealing temperatures, as determined
by a Fourier analysis of x-ray diffraction peak profiles. The
straight lines are guides to the eye illustrating linear growth
kinetics at initial annealing times; deviations from linearity be-
come apparent when R̄ exceeds �150 nm.
grain boundaries are locations of excess volume dV rela-
tive to the single-crystalline state. Since grain growth en-
tails a reduction in the total grain-boundary area A, the
excess volume localized in the annihilated boundary area
must be accommodated elsewhere in the sample or trans-
ported to the surface. According to recent computer simu-
lations performed by Upmanyu et al. [15], much of the
excess volume freed during grain growth is initially in-
corporated into nearby crystalline regions in the form of
vacancies, leading to a nonequilibrium vacancy concentra-
tion and a concomitant increase in the free energy G, which
counteracts the decrease in G associated with the reduction
in A [7,8]. Estrin et al. [7–9] showed that, as long as R̄
is smaller than a critical size R̄c, this vacancy-generation-
induced reduction in the overall driving force for grain
growth leads to a dramatic slowdown in growth kinet-
ics and an approximately linear increase in R̄ (equivalent-
sphere diameter) with annealing time according to

R̄�t� � R̄0 1
gDSD

12NkBTZ��dV��A�2 t �R̄ , R̄c� , (1)

with initial grain size R̄0, temperature T , Boltzmann con-
stant kB, and the following material parameters: grain-
boundary energy g, bulk self-diffusion coefficient DSD,
number of atoms per unit volume N , and atomic coordi-
nation number Z. When R̄ is greater than R̄c, the pro-
duction of excess vacancies is no longer rate determining
for boundary motion, and the classical parabolic growth
kinetics obtain:

R̄2�t� � R̄2
0 1 8mgt �R̄ * R̄c� , (2)

where m denotes the grain-boundary mobility [1,2]. The
critical grain size R̄c separating the ranges of validity of
Eqs. (1) and (2) is determined by equating their respective
time derivatives:

R̄c � 48NkBTZ��dV��A�2m�DSD . (3)

Inserting typical values for aluminum into the right-hand
side of Eq. (3), Estrin et al. [9] estimated R̄c � 200 nm,
suggesting that the initial grain growth in nanocrystalline
materials is governed by Eq. (1) rather than Eq. (2).

Although the linear growth evident in Fig. 1 is consistent
with the predictions of the model, the linearity could be an
artifact of the small range in grain sizes over which the ini-
tial growth stage seems to extend — that is, the grain-size
evolution at R̄ , 150 nm may actually follow Eq. (2) with
an imperceptibly small curvature. A clear distinction be-
tween linear and nonlinear growth kinetics can neverthe-
less be drawn by examining the temperature dependence of
the measured growth rates. In Eq. (2) temperature enters
the rate of growth primarily through the boundary mobility
m, which can be written as

m�T � �
m0

T
exp�2Qmig�kBT � , (4)

where m0 is a constant and Qmig is an effective activa-
tion energy for boundary migration [16]; in experimental
studies of grain growth in coarse-grained polycrystalline
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materials, Qmig is usually found to take on values close
to the activation energy for grain-boundary diffusion [2].
According to Eq. (1), the rate of grain growth in the linear
region is proportional to DSD, the temperature dependence
of which can be expressed in Arrhenius form:

DSD�T � � D0 exp�2QSD�kBT � , (5)

where D0 is a constant and QSD is the activation energy
for self-diffusion in the given material [17]. Since the
latter quantity is typically at least twice as large as the ac-
tivation energy for grain-boundary diffusion [2], we ex-
pect QSD ¿ Qmig; thus, when grain growth is controlled
by the redistribution of excess volume, the activation en-
ergy should be much higher than that of grain growth in a
coarse-grained specimen of the same material.

Substituting Eqs. (4) and (5) into Eqs. (2) and (1), re-
spectively, we find that in both cases the initial growth rate
�dR̄�dt�t!0 is proportional to T21 exp�2Q�kBT �, with Q
representing QSD or Qmig. Thus, a value for the activa-
tion energy governing the initial stage of coarsening can
be determined from the slope of an Arrhenius plot of the
initial growth rate multiplied by the annealing tempera-
ture. Figure 2 represents such a plot for the growth curves
of Fig. 1. All data points in Fig. 2 lie along a straight line,
except at the lowest annealing temperatures near 475 ±C.
A weighted least-squares fit of a straight line (dashed line
in Fig. 2) yields an apparent activation energy Q � 330 6

15 kJ�mol. Considering that the expected value for Qmig,
namely, the activation energy for grain-boundary diffusion
in Fe, is 174 kJ�mol [18], we can rule out grain-boundary
diffusion of Fe as the rate-controlling step for the initial
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FIG. 2. Arrhenius plot of the initial growth rate in nanocrys-
talline Fe for the data of Fig. 1 and additional annealing tem-
peratures. The dashed line is a weighted least-squares fit of
a straight line to the data, which yields an apparent activation
energy of 330 kJ�mol; the solid curve is a fit of Eq. (1) with
adjustable parameter �dV ��A. The optimal value for the latter
quantity is found to be 0.019 nm.
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coarsening of ball-milled Fe. At first glance, the data of
Fig. 2 appear to be inconsistent with the excess-volume
model, as well, since QSD for Fe is typically quoted as
251–282 kJ�mol [18]. However, the latter value is valid
only at temperatures above the Curie transition in Fe; be-
low TC � 770 ±C magnetic ordering imparts an additional
temperature dependence to the exponential term in Eq. (5),
causing QSD to exceed its value in paramagnetic Fe [19].

In order to test the consistency of the excess-volume
model with the data of Fig. 2, we must, therefore, insert
the full temperature dependence of DSD for Fe [20] into
Eq. (1) along with the known values for N , g [21], and Z.
The solid line in Fig. 2 is a least-squares fit of the result-
ing expression for T �dR̄�dt�t!0, which contains a single
adjustable parameter: the average excess volume per unit
area, �dV��A, in the boundary core region. The fit yields a
value of 0.019 6 0.001 nm for �dV��A, which compares
favorably with experimental values ranging from 0.01 to
0.04 nm for special boundaries in bicrystals [22], and a
value of �0.02 nm for high-angle boundaries in nanocrys-
talline Pd [23]. The curvature of the fit function arises
entirely from the temperature dependence of DSD, and it
closely mirrors the curvature evident in the data. Note that
the excess-volume model accounts not only for this curva-
ture but also for the absolute magnitude of the data points,
since the range of physically reasonable values for �dV��A
severely restricts the position of the fit curve in Fig. 2 with
respect to the vertical axis. Thus, the initial coarsening
rates in ball-milled Fe are predicted remarkably well by the
excess-volume model, suggesting that the enhanced ther-
mal stability in this material can be explained without ap-
pealing to solute drag.

As noted above, an alternative model based on the mo-
bility of triple junctions can also account for the occurrence
of linear grain growth at small grain sizes [5,6]. In this
case the measured activation energy would correspond to
that of triple-junction migration, QTJ. If the average value
for QTJ in Fe happens to be equal to QSD, then the data
of Fig. 2 cannot rule out the possibility that triple-junction
migration is the rate-controlling step for grain growth in
ball-milled Fe. However, even though there is no known
general relation between QTJ and QSD for polycrystalline
materials, it seems improbable that these two quantities
would be equal over the entire temperature range studied
in these experiments.

Finally, we return to the rapid growth observed in the
first few minutes of each of the annealing treatments.
Analysis of the x-ray diffraction peak profiles reveals that
the microstrain present in the nanocrystalline grains de-
creases from a high level of 0.4% in the as-milled state to
under 0.1% in only �2 min. Microstrain in ball-milled Fe
is known to be caused primarily by dislocations [24], sug-
gesting that the dislocation density decreases rapidly once
the grains begin to grow. Since the onset of linear growth
kinetics coincides with the drop in microstrain to negligi-
bly small levels, we believe that the presence of disloca-
tions in the as-milled powder is responsible for the initially
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rapid growth. This is consistent with the excess-volume
model, because the value of the critical size R̄c depends
on the spacing of sinks for the excess vacancies gener-
ated during boundary annihilation [7]; in the derivation of
Eq. (1) it was assumed that only the grain boundaries act
as vacancy sinks. If the cores of the dislocations in the
as-milled grains act as additional vacancy sinks, then R̄c

takes on a value well below R̄, with the result that the ini-
tial growth rate is governed by Eq. (2) rather than Eq. (1).
During the initial burst of grain growth, the dislocation
density drops precipitously, causing R̄c to increase above
R̄ and linear growth kinetics to obtain until the grain size
exceeds the dislocation-free value for R̄c.

Thus, the kinetics of coarsening in ball-milled Fe are
consistent with the main features of the excess-volume
model developed by Estrin et al. [7–9]: linear growth ki-
netics at small grain sizes, an activation energy for bound-
ary migration equal to that of self diffusion, a transition to
nonlinear kinetics at a grain size on the order of 150 nm,
and a physically plausible value for the excess volume per
unit grain-boundary area, �dV��A � 0.019 6 0.001 nm.
Furthermore, the initial growth rate measured in nanocrys-
talline Fe agrees quantitatively with the model, suggesting
that, in addition to the appearance of grain-size-dependent
growth kinetics, the redistribution of excess volume local-
ized in the boundary cores can account for the anoma-
lously high stability with respect to coarsening observed
in nanocrystalline samples.
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