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Rare-Event Induced Binding Transition of Heteropolymers
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Sequence heterogeneity broadens the binding transition of a polymer onto a linear or planar substrate.
This effect is analyzed in a real-space renormalization group scheme designed to capture the statistics
of rare events. In the strongly disordered regime, binding initiates at an exponentially rare set of “good
contacts.” Renormalization of the contact potential yields a Kosterlitz—Thouless-type transition in any
dimension. This and other predictions are confirmed by extensive numerical simulations of a directed

polymer interacting with a columnar defect.
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The binding transition of a polymer onto another ex-
tended object, such as a second polymer, a membrane, or
an interface, is of interest in a variety of physical circum-
stances [1]. The problem has been studied in the context
of wetting in two dimensions [2,3], the depinning of a flux
line from a columnar defect in type-1I superconductors [4],
the denaturation of double-stranded DNA molecules [5,6],
and the localization of a copolymer at a two-fluid interface
[7]. Faceting of vicinal surfaces can also be seen as the
binding of surface steps [8].

The mathematical framework for the homopolymer
binding transition is well established. For a heteropolymer
(i.e., a disordered sequence of two or more letters), the
transition is expected to be broadened by fluctuations in
the monomer contact energy with the target object. Pertur-
bative treatments of the disorder run into difficulties when
the order of the transition becomes different from that of
the pure case. In the most studied case of a directed poly-
mer interacting with a columnar defect, weak disorder is
found to have no effect on either the transition temperature
or the critical exponents when the transverse dimension d
is between one and three [2,3]. At the marginal dimension
d = 1, Forgacs et al. carried out a perturbative analysis
to all orders in the strength of the disorder and found
only a subleading order correction to the singular part of
the free energy at the transition of the pure case [2]. The
perturbation theory was reexamined by Derrida et al. [3].
By casting the perturbative expansion in a renormalization
group (RG) form, they showed that disorder shifts the
transition temperature and also modifies the critical behav-
ior, though it was not possible to predict the new critical
exponents within their perturbative scheme. Attempts in
settling the controversy numerically have yielded conflict-
ing conclusions [3,6,9].

In this Letter we report a novel RG approach to the het-
eropolymer binding, focusing on the non-Gaussian statis-
tics of rare attractive segments that initiate the transition.
The frequency for these “good contacts,” in the case of a
random sequence, is described by an exponential tail in
the distribution of the contact (free) energy whose decay
rate ¢ depends on temperature. When ¢ reaches a criti-
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cal value, the energy gain at these segments is sufficient to
offset the logarithmic entropy cost to form a bound phase.
This offers an extremely robust and generic mechanism of
heteropolymer binding transition at strong disorder in any
dimension. The critical behavior around the transition is
analyzed in a real-space RG calculation. Combined with
extensive simulation results on the directed random het-
eropolymer, we conclude that, in the disorder dominated
regime, the binding transition becomes infinite order, bear-
ing many of the characteristics of the Kosterlitz-Thouless-
Berezinskii (KTB) transition in the two-dimensional XY
model [10]. The functional RG scheme introduced here
also offers fresh insight into the crossover from the weak
to strong disorder regimes (controlled by other hyperbolic
fixed points), to be discussed in a future publication [11].

To set the scene, let us recall the directed polymer (DP)
problem on a two-dimensional square lattice (r, 7) with a
columnar defect at » = 0. For simplicity, we restrict the
transverse displacement of the DP at each step Ar = 1 to
three possible values, Ar = —1,0, 1. A step on the defect
at r = 0 picks up an energy 7(¢) which depends on the
location of the contact (or monomer index) ¢. In the case
of a random heteropolymer, the contact energies 7(z) are
taken to be identically distributed and independent from
each other.

The above model is easily generalized to the case of a
directed walk on a (d + 1)-dimensional hypercubic lattice,
interacting with a line defect. The role of extra transverse
dimensions is best appreciated in the “necklace” represen-
tation [1], where the partition sum of a DP of length L is
expressed as

Z(L) =Y > expl-H{H/T]. (1)
n 0=n<p<--<t,<L
Here ¢; is the monomer index of the ith contact, and
H({t;}) = Z_n(li) + Zu(liﬂ - t). (2)

The “pair potential” u(¢) is obtained by summing over ther-
mal paths in the bulk connecting two successive contacts
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separated by a distance ¢. It has the generic form
u(t)/T = for + B(d)Int + w + 0™, (3

where f is the reduced free energy per unit length in the
bulk, B(d) = 1 + %Id — 2| is a universal exponent char-
acterizing the first return probability of a random walker in
d dimensions, and w is a model-specific parameter [12].

As emphasized by Fisher [1], the contact point represen-
tation (1) unifies a large class of polymer binding problems
including, under certain approximations, polymers that are
self-avoiding or interacting with a surface. The linear term
in 7 in (3) drops out when the ratio Z(L)/Zy(L) is consid-
ered, where Zy(L) = exp(—foL) is the partition function
of a free polymer. The dominant interaction at large dis-
tances is given by the logarithmic term. Since the density
of contacts vanishes at a continuous transition, the critical
properties are governed by the value of (3, which serves
to define universality classes. For this class of models, it
suffices to consider the DP problem at d = 2, which is the
case we focus on below.

Previous analytical studies, based on a perturbative
treatment of the contact potential, ran into difficulties
when disorder becomes relevant [2,3,9]. To elucidate how
strong disorder modifies the transition, we examine first an
extreme case where the contact potential is infinite every-
where except on a small number of randomly distributed
sites of density A. The reduced contact potential x; =
1(t;)/T on these sites is assumed to be negative and ex-
ponentially distributed with a probability density function
(PDF) p(x) = gexp(gx), where g is the decay rate. For
g < 1, the one-contact partition sum z = > —;—; X
exp(—x;) of a polymer of length L > 1/A is dominated
by the strongest binding site (i.e., glassy). The typical
value of the potential on this site is x,, = —¢g~ ! In(LA).
The excess reduced free energy of a single contact is then
estimated to be

AF/T = x,, + BInL = (8 — ¢~ ") InL + const. (4)

Hence, for ¢ < g. = 1/, a sufficiently long polymer
will make use of the rare occurrence of relatively large
binding energy (of order InL) on a single monomer to form
the bound phase. By setting AF = T, we estimate a “lo-
calization length” & = exp(const/|g — ¢g.|). Polymers of
length L < £ are typically free, while those with L > £
are typically bound.

Although real polymers seldom (if at all) qualify for the
above description at the monomer scale, it turns out that the
exponential tail can be self-generated under coarse grain-
ing. This should come across as no surprise by noting the
following. (i) For a random heteropolymer, a sequence
of consecutive negative 1’s appears spontaneously. The
binding energy is proportional to the sequence length n
which follows the exponential distribution. (ii) Above the
transition temperature T, (Z9)/Z{ diverge with polymer
length for g > q(T), while those with g < ¢(T') remain
finite. This implies that the PDF of Z has a power-law tail

741 towards large values. Equivalently, the PDF of
the reduced free energy, F/T = — InZ, decays exponen-
tially at rate g(T).

The task now is to devise a suitable framework to track
the renormalization of the contact energy distribution due
to multiple contacts. We have succeeded in achieving this
end under a real-space RG scheme. The main ideas are out-
lined below. The contact point representation (2) defines
a one-dimensional lattice gas model. Consider a segment
of b sites along the chain which is mapped to a single site
under a block transformation. The site is occupied (i.e.,
contains a contact) if at least one of the b sites on the seg-
ment is occupied, and empty otherwise. In the former case,
the Boltzmann weight of a contact, w; = exp[—n(t;)/T],
transforms as

(I +w)—1. 5)
i=1

Rescaling t — bt reduces w by a factor b# due to the

logarithmic interaction. Hence the following iterative RG

equation is seen to hold:

b
w =

b

1+w=biﬁi]j!(1+wi)+1—biﬂ. (6)
For b = 2, Eq. (6) coincides with the iterative equation
for the partition function Z = 1 + w on the Berker lattice
given by Derrida et al. [3]. A full treatment of the prob-
lem can be formulated in terms of the PDF P(x) of the
reduced contact free energy x = — In(1 + w). From the

distribution of the sum y = >, x;,

b b
0(y) = fdx1~--dxb6(y — Zx,-)l"[P(xi), (7a)
i=1 i=1

we obtain the distribution of ¥ = — In(1 + W),
- d
Pe) = Q@197 (7b)

Here (¥) =% — BInb — In[1 + (b~ — 1)exp(®)] is
obtained from (6) by solving for y.

In the limit » — 1, Egs. (7) define a RG flow in the
space of distributions. Since Q(x) is a convolution of P(x),
it is convenient to introduce the Laplace transform,

P(s) = fidx e *P(x).

Collecting terms to the first order in dI = Inb, we obtain
dP(s)
dl
_ Consider first the homopolymer problem described by
P(s) = exp(—as). The parameter a, which defines an
effective free energy on a given scale, satisfies
da/dl = a + B(1 — e%). 9)

The stable fixed point at @ = 0 corresponds to the unbound
phase where the contact potential renormalizes to infinity.
The binding transition occurs at a = a, < 0.

= P(s)InP(s) — Bs[P(s) — P(s — 1)]. (8)
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The PDF P(x) = Agexp(gx) + (1 — A)8(x) consid-
ered in the single-contact model above corresponds to

’\() {io’-'_As/(q_s),

s <gq;

P(s) = s=gq.

(10)
Setting A = 0, we obtain a family of fixed-point functions
of (8), parametrized by g. Writing P(s) = (Z*), where
Z =1 + w represents a certain restricted partition func-
tion, we see that these fixed points describe correctly the
behavior of the system above the binding transition.

It can be shown that, within the class of functions that
have a power-law singularity at s = ¢, (10) is the only
one that is renormalizable [11]. We have derived a two-
parameter RG flow equation from (8) by matching terms
that diverge as s — ¢. For A <« 1, the result reads

1
dq/dl = —EqA, (11a)

dA/dl = (1 — gB)A + 22_qqA2. (11b)

The RG flow obtained by integrating (11) at 8 = 3/2
is illustrated in Fig. 1(a), where ¢ is plotted against Al/2
in analogy with the KTB transition. The critical mani-
fold (T = T,) is indicated by the thick line. For T > T,
the flow ends on the A = 0 axisata ¢ > g, = 1/B. In
contrast, below but close to T., A first decreases, reaches
a minimum value, and then increases again. Integrating
the flow equation near ¢ = g, and A = 0 yields an expo-
nentially diverging correlation length & = &y exp(a|T —
T.|7'/?). As in the KTB transition, the free energy per
unit length has an essential singularity when approaching
T. from below,

fs =T/& = (T/&)exp(—allT — T 7). (12)

We have checked the above predictions against (i) full
iteration of Egs. (7) at b = 2 and 8 = 3/2 (Berker lattice
with a branching ratio n = 24/2) and (ii) transfer matrix
calculation in (1 + 1) dimensions. In both cases, the con-
tact energy is taken to be n = ug + 2g> + 2ge, where

FIG. 1. RG flow from Egs. (11) (a) and from full iteration of
the distribution on the Berker lattice (b) (see text).

832

uy is the strength of the contact potential at the homopoly-
mer binding transition and € is a random variable satisfy-
ing the normal distribution. With this choice, the transition
temperature of the annealed problem (as defined by F, =
—T In(Z)) is fixed at T, = 1. The strength of the disorder
can be tuned by varying g.

To probe the effective contact potential on a given scale
L on the square lattice, we have computed the partition
sum Z(L) over all directed paths that start at (0,0) and
end at any point on the ¢t = L line. The quantity x(L) =
—In[Z(2L)/Z(L)], computed for a given realization of
the disorder, yields a single-scale contact potential [11].
Figure 2(a) shows the integrated distribution II(x) for two
temperatures at g = 2 and a sample size 10°. The expo-
nential tail quickly develops as L increases. At T = T,
(top), the tail decays as exp(x). The preexponential am-
plitude decreases as a power of L. At T = T, (bottom),
the decay rate of the tail approaches the critical value
g = 2/3, while the amplitude changes very slowly as
compared to higher temperatures. In both cases, the typi-
cal value of x(L) approaches % In2 (dotted lines) expected
for a uniform repulsive potential. The integrated distribu-
tion of x = — InZ on the Berker lattice, obtained through
numerical iteration of (7), is shown in Fig. 2(b). A similar
trend is observed, but the data span over a much bigger
range and are much less noisy.

Using the Berker lattice data, we have fitted the tail of
I1(x) to the exponential form A exp(gx). The evolution of
A(L) and ¢(L) in the critical region is shown in Fig. 1(b).
Each data set corresponds to an increasing series of L in

(b)
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FIG. 2. Evolution of the integrated PDF II(x) as L increases
in powers of 4 (in the direction of the thick arrows). (a) Square
lattice with periodic boundary conditions and a lateral size of
2 X 1024 sites (g = 2, 10° samples). (b) Berker lattice at n =
2v2 and g = 1.
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powers of 4 (from right to left) at a given temperature. The
resemblance to the RG flow diagram in Fig. 1(a) is ap-
parent. Therefore, the two-parameter flow equations (11),
although only approximate in construct, correctly capture
the asymptotic renormalization of the tail.

On the square lattice, the localization length &) in the
bound phase can be determined from the mean free energy
—(InZ(L)) which goes through a maximum at L = £,
as shown in Fig. 3(a). For a polymer of length L < &,
—(InZ) increases with L and approaches the asymptotic
behavior %lnL (dashed line) of a purely repulsive line.
Thus, even at T < T, a sufficiently short polymer (or
a short segment of a long polymer) is typically repelled
by the target object. The attraction, due to rare events,
is felt (in a typical realization of the disorder) only when
L > £). The asymptotic behavior at L > £ is given by
(InZ(L)) = —fL, where f(T) is the reduced free energy
per unit length in the thermodynamic limit. The variation
of &) and f with T, as shown in Fig. 3(b), is in agree-
ment with Eq. (12). Extrapolating the curves to the hori-
zontal axis (as indicated by the dashed lines), we obtain
T./T, = 0.96, 0.9, 0.85, and 0.8 for g = 1.5, 2, 2.5, and
3, respectively. These values agree with the analysis based
on the evolution of the tails of the distribution. Details of
our study will be published elsewhere.

In summary, we propose that the random heteropolymer
binding transition at strong disorder is induced by rare fluc-
tuations of the contact potential. A real-space RG scheme
is presented to analyze the evolution of the PDF of the
contact potential under successive block transformations.
Within a two-parameter ansatz for the tail of the distribu-
tion, a RG flow similar to that of the KTB transition is
derived. The analysis yields an exponentially diverging
correlation length and an essential singularity for the free
energy as T, is approached from the bound side. These
predictions, which hold in all dimensions when disorder is
relevant, are confirmed by extensive numerical calculations
on the Berker lattice and on the square lattice in (1 + 1)
dimensions.

Finally, we comment briefly on the relationship between
our work and previous numerical studies [3,6,9] of the DP
binding transition on the square lattice, which were done
on binary disorder with » = p = A. By looking at the
evolution of P(x) at T = T,, we discover that, even for
A = oo (while keeping p — A finite), the tail develops at a
much slower rate than for Gaussian disorder. Since d = 1
is marginal with regard to the relevance of weak disorder,
we expect results reported previously to be influenced, to
a lesser or greater extent, by crossover effects. Indeed,
the transition temperatures 7, determined in these stud-
ies, using methods different from ours, are either indistin-

5
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lattice.
(a) —(InZ) vs log(L) for g = 3 and T = 0.15, 0.25, 0.35, 0.45,
0.55, and 0.65 (from bottom to top). (b) Variation of & and f
with T for g = 1.5, 2, 2.5, and 3 (from right to left).

FIG. 3. Transfer matrix results for the square

guishable or only slightly below T, of the corresponding
annealed problem. We leave a detailed discussion of this
and other issues to a future publication.
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