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Isotope-Disorder-Induced Line Broadening of Phonons in the Raman Spectra of SiC
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The width of phonon lines in the Raman spectra of ideal isotopically pure solids is determined by
inelastic scattering processes. In solids that contain a mixture of different isotopes of one atomic con-
stituent, elastic scattering due to isotopic mass disorder opens up decay channels that result in additional
line broadening. We use different polytypes of SiC with an associated number of Raman active modes
in order to experimentally validate the proportionality between linewidth and phonon density of states
predicted by a simple elastic scattering theory.
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The frequencies of vibrational modes in a solid depend
on the interatomic force constants and the atomic masses.
By changing the mass of atoms by isotopic substitution the
frequencies of modes are changed in a small but character-
istic way that can be monitored by Raman spectroscopy. In
isotopically pure crystals the width G0 of the Raman line
is determined — aside from experimental resolution —by
the phonon lifetime which is governed by the spontaneous
anharmonic decay into phonons of lower energy [1]. In an
isotopically disordered material an additional contribution
Giso to the linewidth comes from the elastic scattering of
phonons via mass fluctuations and has been observed for
diamond [2,3], Ge [4–7], a-Sn [8], and ZnSe [9].

Line shift and line broadening are theoretically obtained
as real and imaginary parts of a complex self-energy which
can be calculated in the framework of a coherent poten-
tial approximation (CPA). This theory describes, for ex-
ample, frequency shift and line broadening very well in
isotopically disordered diamond [3], Ge [4], and a-Sn [8].
However, the considerable computational effort that is
necessary to extend this theory beyond elemental solids
has prevented similar calculations for binary compounds.

A mass perturbation theory of the harmonic lattice dy-
namics for calculating Giso has been developed by Tamura
and applied to Ge [10], GaAs, and InSb [11]. According
to this theory the mass-disorder-induced contribution Giso

is given by the elastic scattering rate t
21
iso which in turn

depends on three factors: the relative mass variance g, the
phonon density of states r�v� at the frequency v of the
Raman mode, and a relevant phonon eigenvector e:

Giso � t21
iso �

p

6
v2gjej4r�v� . (1)

Equation (1) has the form of Fermi’s golden rule in that the
scattering rate t

21
iso of a phonon at frequency v is, for fixed

relative mass variance, directly proportional to the density
of states r�v� into which the phonon can scatter. Equa-
tion (1) should lend itself to a rather straightforward inter-
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pretation of experimental data. Here we utilize the unique
properties of the Raman spectra of isotopically disordered
Si13Cx

12C12x polytypes to confirm the linear dependence
of t

21
iso on r�v� with a slope that yields an experimen-

tal value for the phonon eigenvector jeCj of the carbon
sublattice.

The polytypes of silicon carbide (SiC) are an ideal test-
ing ground for the theory of mass-disorder-induced broad-
ening. On account of their large unit cells they yield a
considerable number of Raman active zone-center
phonons. Moreover, these modes and the corresponding
r�v� are related to each other via the backfolding concept
[12]. As far as the phonon dispersion is concerned, the
polytypes can be regarded as natural superlattices that
originate from different stacking sequences of Si-C double
layers along the [111] direction (G-L) of the zinc blende
(3C) modification. Accordingly, the phonon dispersion
curves of all noncubic polytypes are well approximated
by folding the 3C dispersion along [111] into the smaller
Brillouin zone of the polytypes corresponding to larger
unit cells in the direction equivalent to the [111] direction.
The Raman active zone-center phonon modes are thus
labeled by the phonon branch (TA, LA, TO, LO) and
by the fraction of their wave vector in terms of the G-L
distance of the 3C-SiC Brillouin zone, e.g., TO(2�6) or
TO(2�5) for a particular mode in 6H-SiC and 15R-SiC,
respectively. By studying the mass-disorder-induced line
broadening for SiC polytypes a stringent test of Tamura’s
theory is thus possible.

Crystals of 6H- and 15R-SiC polytypes were grown
using a modified Lely technique (physical vapor transport
method) [13] from a source material that was obtained
by sintering a stoichiometric mixture of 99% pure 13C
and silicon powder with natural isotopic composition
(mSi � 28.09 u) in a graphite crucible. Lely platelets of
6H- and 15R-SiC with natural carbon isotopic composition
(mC � 12.01 u) were used as seed crystals. Because of
the incorporation of 12C from the crucible the crystals
contain 13C with a concentration varying between 0% and
© 2001 The American Physical Society
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40% [14]. Raman spectra were recorded at room tempera-
ture in a Raman microprobe setup in backscattering con-
figuration using the 514.5 nm Ar-ion-laser line. The 13C
concentration x was determined from the frequency shift
of the TO(0) mode, which was calculated in the virtual-
crystal approximation (VCA). Within the VCA each
lattice site is assumed to be occupied by identical
carbon atoms of average mass mC � �12 1 x� u corre-
sponding to the mixture of 12C and 13C in 13Cx

12C12x

[15]. For such a virtual crystal, the square of the
TO(0) mode frequency is proportional to the in-
verse of the reduced mass m, i.e., v

2
TO�0� ~ m21 with

m � �1�mC 1 1�mSi�21, where mSi is the average mass
of the isotopic mixture of natural Si.

Raman spectra of folded transverse optic (TO) modes
of natural and isotopically enriched 6H-SiC and 15R-SiC
with x � 0.26 are shown in Figs. 1(a) and 1(b), respec-
tively. Altogether there exists six modes which are labeled
as outlined above. For the isotopically enriched samples
all modes shift to lower frequencies. In addition, a broad
structure around 750 cm21 appears in the spectra of both
13C enriched polytypes. We assign this structure to iso-
topic disorder-induced Raman scattering by TO phonons
with q fi 0 (band modes) as reported for germanium [6].
This broad structure roughly coincides with the phonon
density of states. Most important in the present context,
the TO modes of 6H-SiC and 15R-SiC broaden to different
degrees in the isotopically enriched samples. We assume
that additional scattering due to defects and impurities is

FIG. 1. Raman spectra of the TO modes of natural and iso-
topically mixed 6H-Si13Cx

12C12x (a) and 15R-Si13Cx
12C12x (b).

The spectra are normalized to the amplitude of the TO(2�6) and
the TO(2�5) mode, respectively.
negligible in our samples, since the crystalline quality of
our samples is identical to that of a standard grown crystal
with a low defect density. Thus, the additional contribu-
tion to the linewidth comes from the elastic scattering of
phonons. According to Eq. (1) differences in the phonon
density of states at the mode frequencies account for the
different broadening of the peaks of the spectra of Fig. 1
provided that gC�x� and jeCj are constant for all TO modes
in both polytypes. For fixed x, the relative mass variance
gC�x� is constant and the absolute values of the eigenvec-
tors for all TO modes do not vary by more than 2% ac-
cording to ab initio calculations [16].

The contribution Giso to the linewidths has been ob-
tained by fitting the spectra with Voigt profiles in which
the Gaussian width was fixed to the experimental resolu-
tion (1.8 cm21). In order to account for the contribution
of line broadening due to anharmonic decay and Si iso-
topic disorder, respectively, the linewidth G0 obtained for
samples with natural composition has been subtracted. In
Fig. 2 the values for Giso obtained in this way divided by
the square of the phonon frequency are plotted versus the
phonon density of states r�v� of 6H-SiC as calculated
in Ref. [17]. Because of the lack of theoretical data for
the phonon density of states of 15R-SiC we have used the
phonon density of states of 6H-SiC for both polytypes.
In fact, if one compares r�v� for 4H- and 6H-SiC (see
Ref. [17]) one finds differences of no more than 10%. If
anything, the difference in r�v� for 15R-SiC is expected to
be lower because the hexagonality, which is defined as the
percentage of hexagonal stacking in the respective poly-
type, of 15R-SiC (40%) lies between that of 4H- (50%)
and 6H-SiC (33%). The proportionality between Giso and
r�v� is clearly maintained over 1 order of magnitude in
both quantities as demonstrated by the linear regression to
the experimental data indicated by the solid line. Hence,
our data verify the role of the phonon density of states

FIG. 2. Linewidths divided by the square of the phonon fre-
quency of the characteristic modes of different SiC polytypes
plotted as a function of the phonon density of states at the corre-
sponding mode frequencies. The solid line is a linear regression
to the experimental data.
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for the mass-disorder-induced contribution to the phonon
linewidth as expressed by Eq. (1). From the slope of the
linear regression the absolute value of the phonon eigen-
vector jeCj of the carbon sublattice can be calculated using
gC�x � 0.26� � 1.28 3 1023 as obtained from Eq. (2)
given below. We obtain jeCj � 0.83 6 0.01, a value in
good agreement with the experimental results of Ref. [18]
determined from the shift of Raman lines in SiC polytypes
grown from natural silicon (�28Si) and 30Si, respectively
and with ab initio calculations which yield jeCj � 0.84 at
the G point and jeCj � 0.86 at the L point [16].

In the following, we address the x dependence of Giso.
The linewidths Giso of the three Raman active TO modes
in 6H-SiC are given in Fig. 3 for 13C concentrations that
cover 0 , x , 0.4. The solid lines are calculated after
Tamura’s theory using Eq. (1) with an absolute value of
the eigenvector of jeCj � 0.84 and the phonon density of
states from Ref. [17]. According to Eq. (1) the contribu-
tion of mass disorder to Giso�x� is determined by the rela-
tive mass variance gC�x� of the carbon sublattice:

gC�x� �
X

i

ci

µ
mi 2 m

m

∂2

� x

µ
1 2 x
12 1 x

∂2

1 �1 2 x�
µ

x
12 1 x

∂2

, (2)

where ci is the relative fraction of the isotope with mass
mi . gC�x� is essentially a symmetric function of x with a

FIG. 3. Mass-disorder-induced contribution to the phonon
linewidth as a function of 13C concentration for the three TO
modes observable in 6H-SiC. The solid lines are obtained
from Eq. (1), whereas the dotted lines are scaled CPA diamond
results from Ref. [3] as explained in the text. The vertical line
marks x � 0.26 used for Fig. 2.
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maximum at x � 0.5. The comparison between theory
and experimental data in Fig. 3 indicates that Tamura’s
theory gives a rather poor description of Giso as a func-
tion of x. In particular, there is no indication that the
experimental linewidth reaches a maximum for x � 0.5.
Instead, the experimental data appear to follow the asym-
metric x dependence as was measured in diamond [3]
and predicted by the CPA theory of Taylor [19]. In the
CPA theory the linewidth is obtained as the imaginary part
of the complex self-energy as stated above. This self-
energy depends, in general, asymmetrically on the mass
disorder: small additions of an isotope with smaller mass
to a host with a larger mass isotope have a stronger ef-
fect on Giso than the opposite case [3]. The experimental
data of Figs. 2 and 3 can be recast into the simple form
of Tamura’s expression for Giso by defining a modified
mass-disorder function hC�x� as indicated by the dotted
lines in Fig. 3. In lieu of any realistic disorder function
for SiC we took the calculated asymmetric CPA curve of
Giso�x� for diamond from Ref. [3] as a starting point. This
function was first multiplied with a constant factor chosen
such that an optimal fit to the linewidths of the TO(2�6)
mode over the measured concentration range was achieved.
In the spirit of Tamura’s theory, the resulting curve rep-
resents Giso���TO�2�6���� ~ v

2
TO�2�6�hC�x�r�vTO�2�6��. Thus,

dividing Giso���TO�2�6���� by v
2
TO�2�6�r�vTO�2�6�� we obtain

a modified mass-disorder function hC�x�. The linewidth
functions for the other two modes [TO(6�6) and TO(0)]
were consequently derived by simply multiplying hC�x�
with the factor v2r�v�, where v and r�v� are the fre-
quencies and the densities of states for the other two
phonon modes, respectively. To the extent that the data
follow the Giso curves constructed in this way the linear
relationship

Giso ~ v2hC�x�r�v� (3)

is confirmed over the whole concentration range measured
with a common, asymmetrical disorder function hC�x�. We
note in passing that gC�x� and hC�x� coincide at x � 0.26.
Hence, the value of jeCj derived above is not affected by
substituting gC�x� with hC�x�.

In summary, we have shown that the linewidth of a
phonon in isotopically disordered SiC does not depend
only on the degree of mass disorder but also on the fre-
quency of the phonons. The latter point can be under-
stood in the framework of a simple scattering theory as
formulated by Tamura. In this theory, the elastic scatter-
ing by mass fluctuations contributes to the linewidth and
the scattering rate is proportional to the density of final
phonon states. We could confirm this proportionality be-
tween linewidth and phonon density of states. The poly-
types of SiC are an ideal testing ground for that aspect of
Tamura’s theory, since the accessible Raman active modes
cover a larger range of phonon density of states than is usu-
ally found in other materials. A further aspect of Tamura’s
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theory, namely, the linear relationship between linewidth
and relative mass variance, is not fulfilled in our experi-
ments; a more sophisticated theory is clearly needed to
describe this dependence.
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