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Chaos Synchronization and Spontaneous Symmetry-Breaking in Symmetrically Delay-Coupled
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We present experimental and numerical investigations of the dynamics of two device-identical, op-
tically coupled semiconductor lasers exhibiting a delay in the coupling. Our results give evidence
for subnanosecond coupling-induced synchronized chaotic dynamics in conjunction with a spontaneous
symmetry-breaking: we find a well-defined time lag between the dynamics of the two lasers, and an
asymmetric physical role of the subsystems. We demonstrate that the leading laser synchronizes its
lagging counterpart, whereas the synchronized lagging laser drives the coupling-induced instabilities.
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Coupled nonlinear oscillators exhibit a great variety of
fundamental dynamical phenomena including synchro-
nization of periodic and even chaotic oscillations. These
phenomena are encountered in many different systems
in nature and science ranging from chemical oscillators,
population dynamics, physiological interactions, coupled
neurons, to mechanical oscillators and lasers; see, e.g.,
[1]. Thus, the understanding of the dynamics of nonlinear
coupled oscillators is essential for a wide range of sci-
entific investigations. In real systems, the coupling often
exhibits a significant delay due to the separation between
the subsystems. The additional degrees of freedom
present in these delay-coupled oscillator systems may
qualitatively alter their dynamical behavior. Experimental
studies have not yet addressed the impact of delay on
the dynamics of nonlinear coupled oscillators, whereas
theoretical investigations have already demonstrated bista-
bility between synchronized and incoherent states [2] and
stochastic resonance [3]. In order to study the dynamics
of nonlinear delay-coupled oscillators experimentally, we
have selected two distanced semiconductor lasers (SL)
which are coupled via the optical field. The delay is
determined by the propagation between the subsystems
and is much larger than the SL internal oscillation periods.
Recent studies of very weakly coupled SLs demonstrating
localized synchronization of periodic oscillations [4] have
underlined the fundamental relevance of this system.
Furthermore, SLs have an immense potential for practical
applications, in particular, for future telecommunications
technologies: the proposal of novel communication sys-
tems using chaotic carriers based on chaos synchronization
of distanced lasers [5,6] has further boosted the interest in
coupling and synchronization phenomena in SLs.

A scheme of our experimental setup is depicted in Fig. 1.
The system consists of two uncoated Hitachi HLP1400
Fabry-Perot SLs. We have selected two device-identical
lasers (optical spectra agree within 0.1 nm, slope efficiency
within 2%, and threshold current within 5%) produced
0031-9007�01�86(5)�795(4)$15.00 ©
from the same wafer in order to achieve the highest pos-
sible degree of symmetry. Both lasers are pumped at a
constant level, upon which, optionally, a sinusoidal modu-
lation may be superposed. The temperature of each laser is
stabilized to better than 0.01 K and selected such that the
frequencies of the two lasers match with an accuracy better
than 1 GHz. Guaranteed by the polarizer (Pol.), the lasers
are coherently coupled via the dominant TE component of
the optical field. The neutral density filter (NDF) controls
the coupling strength. The coupling time t is determined
by the propagation of the light between the lasers and has
been varied between 3.8 and 5 ns. Thus, t is significantly
larger than the SL internal time scales, i.e., the relaxation
oscillations, or the laser cavity round-trip resonance. We
detect the intensity dynamics of both lasers simultaneously
with dc to a 6 GHz bandwidth and analyze the signal us-
ing a fast oscilloscope of a 3 GHz analog bandwidth and
an electrical spectrum analyzer (ESA). Thus, our detection
equipment allows us to record the intensity time series of
both lasers simultaneously on a subnanosecond time scale.
In addition, we monitor the optical spectra of the two lasers
with an optical spectrum analyzer (OSA) with a 0.1 nm
resolution and detect the time averaged output power.

In the experiments, we inject a well-controlled amount
of the emitted light of either laser into the other laser,

FIG. 1. Scheme of the experimental setup.
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approximately 5% of the respective output power, leading
to a threshold reduction of 6% in both lasers. Pumping
both lasers at their solitary threshold Isol

th , we observe strik-
ing coupling-induced instabilities: Fig. 2 depicts a 200 ns
snapshot of both intensity time series of the coupled lasers;
the lower trace is plotted inverted to ease the comparison
between the two signals. The coupling-induced instabil-
ities are characterized by fast intensity fluctuations on a
subnanosecond time scale combined with pronounced
intensity dropouts occurring on much slower time scales.
The very similar rf spectra of both lasers exhibit a
dominant low frequency part and peaks at frequencies
corresponding to multiples of 1��2t�; the optical spectra
display several longitudinal modes of the solitary laser.
We note that this dynamical behavior closely compares
to the low frequency fluctuations (LFF) phenomenon
of a single SL subject to delayed optical feedback [7].
However, we emphasize that the instabilities in the present
experiment are not induced by passive feedback due to
external reflections. Starting from the situation depicted
in Fig. 2, we reduce the injection current of one of the
lasers below its transparency point. We observe that the
other laser (still driven at its solitary threshold) exhibits
stable emission, and, accordingly, a flat rf spectrum. Thus,
the instabilities depicted in Fig. 2 indeed result from the
coherent coupling with a delay between the two lasers.

In addition, Fig. 2 exhibits another remarkable dynam-
ical phenomenon. The low frequency intensity dropouts
always occur strongly correlated in both lasers, however,
with a constant time lag between the two signals. This
delay between the leading laser (leader) and the lagging
laser (laggard) which exactly corresponds to the coupling
time t is the manifestation of a spontaneous symmetry-
breaking in the system. To resolve the underlying fast
dynamics, Fig. 3 presents a 9 ns zoom of the two nonin-
verted intensity time series. For clarity, the laggard time
series is shifted vertically and horizontally compensating
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FIG. 2. Intensity time series of the two lasers. The lower
trace shows the inverted time series. Both lasers are pumped at
I � Isol

th . The threshold reduction due to the coupling amounts
to 6%. The coupling time is t � 4.75 ns.
796
the time delay t. Figure 3 demonstrates that both intensity
and oscillation phase of the irregular dynamics of the two
delay-coupled SLs are synchronous on a subnanosecond
time scale. Furthermore, the rf and the optical spectra of
leader and laggard are experimentally indistinguishable
confirming the synchronization. By correlation analysis of
a large number of pairs of time series, we confirm that the
synchronization and the delay are robust against reasonable
variations of the injection current, the coupling strength,
and the coupling time; the delay between leader and lag-
gard remains equal to the coupling time t. We note that
previous research has already demonstrated spontaneous
symmetry-breaking in coupled chaotic systems without
delay [8]. However, what we observe here is a leader-
laggard-type conjunction of spontaneous symmetry-
breaking with chaos synchronization which is linked to
the delay present in the coupling.

We find that the difference between the solitary laser
wavelengths is an easily accessible and well-defined con-
trol parameter determining the direction of the symme-
try-breaking: always the laser detuned to higher energies
takes the leader role. About 1 GHz of detuning is already
sufficient to create a well-defined leader-laggard configu-
ration. In addition, we can interchange the dynamical role
of the lasers in a symmetrical way by reversing the de-
tuning. This behavior may be related to the asymmetric
injection locking properties [9]. For zero detuning, finally,
a spontaneous symmetry-breaking occurs, and one of the
lasers is taking the lead by chance. In the experiment, we
can achieve only a finite accuracy with respect to detuning
and similarity between the subsystems. Therefore, we per-
form numerical simulations of two identical lasers in order
to exclude any relevant influence of slight dissimilarities
eventually present in the experiment.

For our numerical simulations, we have extended the
fundamental SL rate equations for the slowly varying
complex electrical field amplitudes E1, E2 and the car-
rier numbers N1, N2 by adding delay coupling terms
kE2,1�t 2 t�:
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FIG. 3. 9 ns zoom of the intensity time series plotted in Fig. 2.
Here, the time series of the laggard is noninverted, but shifted
by 4.75 ns in time.
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We assume zero detuning; i.e., both lasers emit at the same
frequency. The parameters used in our numerical sim-
ulations correspond to the experimental conditions. We
select identical parameters for both lasers noting that we
obtain similar results even for slight differences between
the lasers. The linewidth enhancement factor is a � 3.5,
the cavity losses g � 282 ns21, and the differential gain
g � 3.2 3 1026 ns21. The coupling rate k � 23 ns21

accounts for the symmetrical coupling strength between
the lasers. The coupling time is t � 4.75 ns, the carrier
decay rate ge � 1.66 ns21, the carrier value at trans-
parency Nt � 1.5 3 108, the gain saturation parameter
´ � 5 3 1027, the current I � Isol

th , and the sponta-
neous emission rate b � 1026 ns21. The spontaneous
emission processes are modeled by including white
Gaussian noise j1,2 with zero mean and correlation
�j�

i �t�jj�t0�� � 2di,jd�t 2 t0�.
Figure 4 depicts a thus obtained numerical time series.

Despite the simplicity of the used rate equation model, the
numerical simulations are in excellent agreement with the
experiment and capture the observed dynamical phenom-
ena of delay-coupled SLs: the synchronized fast chaotic
dynamics, the low frequency fluctuations, and the sponta-
neous symmetry-breaking appearing as a time lag of t be-
tween the signals of the two lasers. The occurrence of the
symmetry-breaking in the simulations is remarkable be-
cause equations and parameters are absolutely symmetric
under exchange of the lasers. Indeed, in noiseless numeri-

400 450 500 550 600
Time [ns]

−1.5

−1.0

− 0.5

0.0

0.5

1.0

x105

−P
ho

to
ns

 L
as

er
 2

P
ho

to
ns

 L
as

er
 1

τ

FIG. 4. Numerical intensity time series for two identical delay
coupled SLs. The parameters correspond to the experiment
shown in Fig. 2.
cal simulations, starting both lasers from the same initial
conditions, we find that the lasers evolve in a synchronized
state without a time lag between the signals. However,
the noise term or any small external perturbation breaks
this symmetry. The zero-lag solution is lost, and the sys-
tem exhibits the synchronized leader-laggard dynamics in-
stead. We conclude that the zero-lag solution is unstable,
and spontaneous emission prevents the system to operate
in such a state.

So far, we have observed that the symmetry-breaking
appears as a time lag of t between the signals of the two
lasers. For the physical understanding of the system it
is essential to know whether there is also a change in
the physical role of the subsystems associated with the
symmetry-breaking, i.e., whether leader and laggard play
a different role for the dynamics of the system, and what
role this is. Accordingly, in the following experiment, we
apply a small perturbation, a weak sinusodial modulation
of 0.7%Isol

th , to one of the lasers and investigate the effect
on its unperturbed counterpart. The lasers are slightly
detuned by 2.5 GHz to guarantee a well-defined leader-
laggard configuration. If leader and laggard exhibit
genuine chaos synchronization, the synchronized laggard
should exhibit chaos pass filtering properties [6]. This
peculiar property of synchronized systems contrasts them
to linear amplifiers: if a perturbation is modulated on a
chaotic signal and sent to a receiver system, synchroniza-
tion leads to the fact that the receiver synchronizes only
to the chaotic signal but suppresses the perturbation. In
contrast, a linear amplifier receives both chaotic signal
and perturbation in the same way.

Figure 5 depicts the rf spectra of the two delay-coupled
lasers: (a) for the modulation of the laggard and (b) for
the modulation of the leader. All plotted rf spectra ex-
hibit the same characteristic structure: an intense low fre-
quency part and smaller peaks corresponding to multiples
of 1��2t�. Here, we focus our attention on the peaks at
508 MHz, the frequency of the external modulation. Fig-
ure 5(a) demonstrates that for modulation of the laggard,
the modulation peak is clearly present with comparable in-
tensity in both spectra. Hence, a filtering of the periodic
signal does not take place, and the modulation signal is
transferred to the leader. However, the situation drasti-
cally changes when the leader is modulated. Figure 5(b)
demonstrates that the modulation peak, which is dominant
in the leader spectrum, is not present in the laggard spec-
trum; i.e., the laggard acts as a chaos pass filter and sup-
presses the periodic signal. Thus, we demonstrate chaos
synchronization in delay-coupled SLs: the leader indeed
synchronizes the laggard. We point out that this behav-
ior is symmetric under the exchange of leader and laggard
roles of the lasers which takes place when the detuning be-
tween the two lasers is reversed.

The basic physical mechanism underlying to the cou-
pling-induced instabilities and the associated symmetry-
breaking can thus be interpreted as follows: the chaotic
signal of the leader synchronizes the laggard, whereas the
797
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FIG. 5. rf spectra of leader and laggard. (a) Modulation of the
laggard. (b) Modulation of the leader. The injection current is
I � Isol

th , and the coupling time is t � 3.83 ns.

laggard acts as a driving force of the chaotic dynamics.
The symmetry-breaking manifests itself in these differ-
ent physical roles of the subsystems. The fact that the
leader synchronizes the laggard obviously results in the
synchronous dynamical behavior delayed by the coupling
time t. The driving role of the laggard leads to the ob-
served feedbacklike dynamical behavior: the signal of the
leader synchronizes the laggard whose signal, in turn, is in-
jected into the leader with a delay of 2t after the emission
of the original leader signal. Consequently, the dynamics
of the delay-coupled lasers is comparable to the dynamics
of a single laser subject to optical feedback with a delay of
2t, as opposed to t, which one would expect from simple
symmetry upon reflection considerations. A stability anal-
ysis promises further insight into the physical mechanisms
determining the dynamical behavior of the system. Fur-
thermore, the SL specific origin of synchronization phe-
nomena is still an open question.
798
To sum up, we have reported on subnanosecond,
coupling-induced synchronized chaotic dynamics in
conjunction with a spontaneous symmetry-breaking in
symmetrically delay-coupled SLs. We have confirmed
our experimental results by numerical simulations of two
identical subsystems using a rate equation model. We have
identified the large coupling time, the symmetry-breaking,
and the chaos synchronization as the key elements leading
to the observed coupling-induced instabilities. From
our results, we conjecture that the coupling-induced
instabilities, and the leader-laggard-type conjunction of
chaos synchronization with symmetry-breaking are not SL
specific but are linked to the delay present in the coupling
and could also occur in other delay-coupled nonlinear
oscillators.
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