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Synchronization of Homoclinic Chaos
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Homoclinic chaos is characterized by regular geometric orbits occurring at erratic times. Phase syn-
chronization at the average repetition frequency is achieved by a tiny periodic modulation of a control
parameter. An experiment has been carried on a CO; laser with feedback, set in a parameter range where
homoclinic chaos occurs. Any offset of the modulation frequency from the average induces phase slips
over long times. Perfect phase synchronization is recovered by slow changes of the modulation frequency
based upon the sign and amplitude of the slip rate. Satellite synchronization regimes are also realized,
with variable numbers of homoclinic spikes per period of the modulation.
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Homoclinic chaos of the Shilnikov type, initially ob-
served in chemical [1] and laser [2] experiments, shows
striking similarities with the electrical spike trains travel-
ing on the axons of animal neurons [3]. More generally,
chemical oscillators based on an activator-inhibitor com-
petition, which rule biological clocks controlling living
rhythms, such as the heart pacemaker, hormone produc-
tion, metabolism, etc., display rhythmical trains of spikes
with erratic repetition frequency as shown in Refs. [1,2].
These rhythms cannot be reduced to two dimensional dy-
namics, as instead it is the case of artificial clocks which
are based on stable limit cycles [4—7].

The geometry of homoclinic chaos consists of regular
orbits in phase space, which repeat themselves with a very
small spatial variance. This regularity makes it difficult to
extract relevant chaotic indicators from the geometry of the
measured time series. Time wise however, the return pe-
riod of these orbits is widely fluctuating, with very weak
correlation between two successive returns [8,9]. Being
the most apparent feature, it is convenient to characterize
homoclinic chaos through the statistics of the return inter-
vals [10,11]. The return map of successive return intervals
consists of many branches which cross the fixed point line
at a steep angle, so that successive iterations are sparse
over the plane rather than clustered along the diagonal,
as it should be for correlated sequences. Such a lack of
correlation appears as a pseudo-Markovian behavior, even
though it is purely deterministic. However the highly un-
stable character of the return map makes the homoclinic
chaos extremely vulnerable to noise [12], ruling out the
hope of a practical way of controlling it.

On the other hand, the main concern in the dynam-
ics of biological rhythms is to exploit the synchronization
mechanisms, such as those which occur in large neuron
assemblies during perceptual tasks, called “feature bind-
ing” [13,14] or those associated with an external periodic
driving, such as the circadian rhythms [4—6]. Chaotic syn-
chronization has been introduced as the identical behavior
of two coupled chaotic systems [15], later extended to the
case of only phase correlation of the two systems [16], or as
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the phase locking of a single chaotic system with respect
to an external forcing [17]. In this latter respect, exten-
sive theoretical investigations of Rossler [18] and Lorenz
models [19,20] have been provided. On the experimen-
tal side, chaotic synchronization has been exploited for
communication with lasers [21] and its relevance demon-
strated in some physiological phenomena (heartbeat [22],
electrosensitive neurons [23]); however, quantitative as-
sessments on sensitivity and operational range of the syn-
chronization phenomenon have not been provided so far.

In this Letter we report a viable method of homoclinic
synchronization, showing its robustness notwithstanding
the above mentioned fast decorrelation. We provide ex-
perimental evidence of such a synchronization on a laser
operating in a homoclinic chaos regime [2], to which we
add a small periodic modulation of a control parameter.
When the modulation frequency is close to the “natural fre-
quency,” that is, to the average frequency of the return in-
tervals, the required modulation is below 1%. An increased
modulation amplitude up to 2% provides a wide synchro-
nization domain which attracts a frequency range of 30%
around the natural frequency. However, as we move away
from the natural frequency, the synchronization is imper-
fect insofar as phase slips, that is, phase jumps of =27,
appear. We show how to eliminate these phase slips by a
long time control of the modulation frequency, based upon
the sign and amplitude of the slip rate.

Furthermore, applying a large negative detuning with
respect to the natural frequency gives rise to synchronized
bursts of homoclinic spikes separated by approximately the
average period, but occurring in groups of 2, 3, etc. within
the same modulation period (locking 1:2, 1:3, etc.) and
with a wide intergroup separation. A similar phenomenon
occurs for large positive detunings; this time the spikes
repeat regularly every 2, 3, etc. periods (locking 2:1, 3:1,
etc.). Also these locking regimes are affected by phase
slips, which can be eliminated by the same procedure pre-
sented here for the 1:1 case.

A dynamical model, which will be presented elsewhere,
reproduces with quantitative accuracy all the relevant
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features above reported and provides a sound basis for a
heuristic interpretation of these phenomena as well as a
motivation for their widespread occurrence.

The experiment has been performed on a single mode
CO; laser with a feedback proportional to the output inten-
sity. Precisely, a photon detector converts the laser output
intensity into a voltage signal, which is fed back through an
amplifier to an intracavity electro-optic modulator, in order
to control the amount of cavity losses. The average voltage
on the modulator and the ripple around it are controlled by
adjusting the bias and gain of the amplifier. We set these
two control parameters so that the laser intensity displays a
large spike above zero, followed by a fast damped train of
a few oscillations and a successive longer train of chaotic
bursts which on average appear as a growing oscillation
(Fig. 1). Damped and growing trains represent, respec-
tively, the approach to, and the escape from, an unstable
equilibrium point from where the trajectory rapidly returns
to zero and then starts a new orbit. The average orbital pe-
riod is around 500 us. A suitable characterization of this
regime can be provided by the return time of the main
spike to a threshold level. A digital oscilloscope records
the laser output with a sampling time of 5 ws. From this
time series we collect the times (7;: j = 1,2,...,M) at
which the laser intensity crosses, with positive derivative,
a threshold centered at 70% of the main peak. By using
the set {#;} we define the average return interval as 7 =

ﬁZj:lwﬂ(tjﬂ — t;). This value has been used to
select an appropriate frequency range for the applied forc-
ing. As for the control parameter to be modulated, we
can choose either the bias voltage of the feedback ampli-
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FIG. 1. (a) Experimental time series of the laser intensity for
a CO, laser with feedback, in the regime of homoclinic chaos.
(b) Time expansion of a single orbit. (c) Trajectory built by an
embedding technique with appropriate delays.
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fier or the pump of the gain medium. As our phenomena
are relatively slow (around 2 kHz) we can safely modulate
the discharge current of the laser tube, thus modifying the
pump parameter from Py to Po[1 + msin(27ft)]. The
values of m and f explored in the experiment are reported
in Fig. 3.

For a given modulation period Tp,,q, the phase lock-

ing states are characterized by evaluating the quantity R =

TTd for different values of the modulation amplitude. The

existence of a (p:q) phase locking state obviously implies
that R = g Different phase locking regimes have been
reported in Fig. 2 together with the applied sinusoidal forc-
ing. The main phase synchronization domain (1:1) is re-
ported in Fig. 3a as a function of the amplitude V and
frequency v of the applied forcing. The criterion used
to assign a point to the domain is that the R values be
maintained for almost ten periods. The behavior of R as a
function of the forcing frequency is reported in Fig. 3b for
two values of the modulation amplitude.

It is worth noticing that the adopted criterion to define
the phase locking domain does not guarantee perfect
phase synchronization for all times. To provide a better

laser intensity (arb. units)
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FIG. 2. Experimental time series for different phase synchro-
nizations induced by a frequency modulated control parameter.
For comparison time plots of the modulation control parame-
ter are reported for each case. The modulation frequencies are,
respectively, (a) 1:1 at 1.6 kHz; (b) 1:2 at 0.7 kHz; (c) 1:3 at
0.5 kHz; (d) 2:1 at 2.6 kHz.
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FIG. 3. (a) Phase synchronization domain for the 1:1 locking

ratio. Vertical axis: modulation amplitude in mV and %; hori-
zontal axis: modulation frequency in kHz. The domain edge
points (black circles) correspond to a phase slip more frequent
than any ten returns. (b) Locking parameter R versus the modu-
lation frequency for the two amplitudes 10 mV (circles) and
20 mV (squares).

understanding of phase synchronization in our system
we explore the possible occurrence of phase slips. By this
we mean that at certain times the phase difference between
the laser output and the modulation signal shows jumps of
integer multiples of 277. The phase of the laser intensity
is defined as ¢(¢) = 2mn(t), where n(t) is the number of
spikes occurring in a time interval ¢. In Fig. 4 we report
the phase difference between the laser output intensity
and the modulation S(t) = ¢(¢t) — 27wt for different
v's within the synchronization domain corresponding to
1:1 locking. Departing from the perfect synchronization
(zero phase slip) and approaching the edges of the domain
the slip rate increases. This phenomenon of imperfect
phase synchronization has been studied theoretically in
the forced Lorenz system [19,20].

Here we exploit the slip rate information to readjust the
value of the modulation frequency in order to reach per-
fect synchronization. Precisely, we introduce the average
phase slip rate (dS/dt)a; defined as the number of jumps
S divided by the number Ar of periods of the modula-
tion over which the former number has been evaluated,
(dS/dt)a; goes to zero at the natural frequency (Fig. 4a);
otherwise there is a lead or a lag depending on whether
the modulation frequency is below or above the natural
frequency, respectively. Furthermore, the chaotic char-
acter of the slip occurrences is shown by the variance
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FIG. 4. (a) Phase slips at different frequencies for the 20 mV

amplitude (horizontal line B in Fig. 3a). The dynamical system
monotonically lags or leads in phase depending on whether the
modulation frequency is above or below the perfect synchro-
nization (no slips) value of 1.6 kHz. (b) Expanded view of the
time in a phase slip. The phase slip is like a defect in a periodic
one-dimensional pattern; in fact in this case it is a missed return
to the surface of section.

{(dS/dt)a; — {(dS/dt))]?), where the angular brackets
denote an average over very large A¢. The control consists
in applying increments Av = —a(dS/dt)a; (a > 0 being
a suitable coefficient) to the modulation frequency at every
time increment At, so that the modulation frequency as a
function of time is given by v(t) = vo + > Av(t), where
vg is the unperturbed modulation frequency, and the sum
being extended over all the intervals At up to time 7.

In the experiment, we compare the output signal with the
modulation signal over a time interval Az, evaluate the slip
rate (dS/dt)a,, and readjust correspondingly the frequency
of a waveform generator which modulates the laser power
supply. If At is small, local fluctuations from the average
yield a bad control, whereas for large At the slip rate has
a small variance, thus we expect an asymptotic Az beyond
which the slip rate becomes negligible, as confirmed by the
experiment (Fig. 5). Of course, the persistent application
of such a control brings the modified modulation frequency
asymptotically close to the natural frequency.
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FIG. 5. Long time correction of the phase slip in two cases

where the uncontrolled frequency setting of the modulation is
below (a) or above (b) the frequency corresponding to the per-
fect synchronization; solid and dotted lines represent the uncon-
trolled and controlled cases, respectively. (c) Dependence of the
residual phase slip upon the sampling time in the case (b).

In conclusion, we have shown that homoclinic chaos
can be synchronized by use of the temporal information
contained in the main spikes. This type of chaos how-
ever cannot be controlled due to the decorrelation of the
successive return times; this feature is due to the frequent
leaps among the many unstable periodic orbits contained
within the chaotic attractor. The synchronization is perfect
as the modulation frequency matches the average return
frequency. As we move away from this condition, we mea-
sure an increasing amount of phase slip. This however can
be controlled by a secondary feedback loop which acts on
the modulation frequency, that is, which controls the con-
trol parameter. Since the secondary loop acts on the time
scale of the phase slip, it represents a long time perturba-
tion as compared to the modulation. Thus, our dynamical
system resembles the combination of short-term memory
and long-term memory hypothesized in some dynamical
models of the brain behavior [24].
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