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Study of the K0
L ! p1p2g Direct Emission Vertex
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We have perfomed studies of the K0
L ! p1p2g direct emission (DE) and inner Bremsstrahlung

(IB) vertices, based on data collected by KTeV during the 1996 Fermilab fixed target run. We find
a1�a2 � 20.737 6 0.034 GeV2 for the DE form-factor parameter in the r-propagator parametrization,
and report on fits of the form factor to linear and quadratic functions as well. We concurrently measure
G�K0

L ! p1p2g, E�
g . 20 MeV��G�K0

L ! p1p2� � �20.8 6 0.3� 3 1023, and a K0
L ! p1p2g

DE��DE 1 IB� branching ratio of 0.683 6 0.011.

DOI: 10.1103/PhysRevLett.86.761 PACS numbers: 13.25.Es, 11.30.Er, 12.39.Fe, 13.40.Hq
The decay K0
L ! p1p2g (Fig. 1) is a potential new

window into the phenomenon of CP violation [1–3].
This decay arises primarily from the CP-violating electric
dipole (E1) “inner Bremsstrahlung” (IB) and the CP-
conserving magnetic dipole (M1) “direct emission” (DE)
processes. KTeV recently reported [4] the observation of a
CP-violating angular asymmetry between the p1p2 and
e1e2 decay planes in the K0

L ! p1p2g�, g� ! e1e2

mode, arising from the interference of DE and IB photon
polarization states [5–7]. If an E1 DE term were also
present, this could generate a direct CP-violating effect.

Understanding the precise photon energy (E�
g) spec-

trum from the DE amplitude is crucial to interpretation of
CP-violating effects and may shed light on particular chi-
ral models [8]. Previous experiments [9,10] have observed
evidence for an energy shift in the DE E�

g spectrum, inter-
preted as evidence for an E�

g-dependent form-factor modi-
fication to the pure-M1 DE amplitude. Here we report on
0031-9007�01�86(5)�761(4)$15.00 ©
the first measurement of this form factor from direct fits to
the data, using the rare decay mode K0

L ! p1p2g.
We consider two separate form-factor parametrizations.

Historically, the r-propagator form [8]
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FIG. 1. The decay K0
L ! p1p2g arises primarily from the

contributions of the electric dipole (E1) “inner Bremsstrahlung”
(left) and magnetic dipole (M1) “direct emission” (right) dia-
grams above.
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has been used, where a1�a2 is the quantity of interest.
More generally the form factor may be expressed as a
Taylor series in E�

g
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K

1 . . .

∂
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where the interesting quantitites are the slope r and the
quadratic parameter s [11,12].

The data presented here were collected by KTeV op-
erating in the E832 configuration [13] during the 1996
Fermilab fixed target run. A proton beam of intensity
�3 3 1012 protons per 19 sec spill incident at an angle
of 4.8 mrad on a BeO target was employed to produce two
nearly parallel K0

L beams. In E832, one of these beams was
incident on an active K0

S regenerator. Data collected in the
regenerator beam were ignored for this analysis. The E832
detector consisted of a vacuum decay region, a magnetic
spectrometer with four drift chambers, photon vetoes, a
762
trigger scintillator bank, a CsI electromagnetic calorime-
ter, and a muon veto bank.

Signal K0
L ! p1p2g and normalization K0

L ! p1p2

candidates were selected from the two-charged-track trig-
ger. Offline, the samples were further purified by requiring
the presence of two reconstructed tracks with a good vertex
x2 within the fiducial aperture of the detector, and no sig-
nificant activity in the photon veto counters. The two-track
vertex was required to be located within the vacuum (non-
regenerator) beam. The tracks’ kinematics were required
to be inconsistent with L0 ! p1p2 decays. The energy
deposited by the charged pions in the calorimeter was re-
quired to be less than 0.853 the spectrometer momentum
in order to eliminate backgrounds from Ke3 decays. Can-
didate events were required to have a decay vertex between
110 and 156 m downstream of the target and a total energy
between 20 and 160 GeV.

K0
L ! p1p2g candidates were subject to the addi-

tional criterion of requiring that the quantity
P2
p0 �

�M2
K 2 M2

p0 2 M2
pp �2 2 4M2

p0M2
pp 2 4M2

K �P2
T �pp

4��P2
T �pp 1 M2

pp �
(3)
be negative, i.e., by requiring that the p0 momentum be
imaginary under a K0

L ! p1p2p0 hypothesis. This cut
virtually eliminates the K0

L ! p1p2p0 background to
the K0

L ! p1p2g event sample. In addition, at least
one non-track-associated cluster in the calorimeter was re-
quired to possess $1.5 GeV of energy, and to be at least
3 cm removed from the calorimeter edges. This “photon
cluster” had to be at least 20 cm from the nearest track
projection to reject background from K0

L ! p1p2 events
accompanied by pion hadronic showers in the calorime-
ter. The photon was required to have an energy of at least
20 MeV in the three-body center of momentum.

Figures 2(a) and 2(b) show the vacuum beam K0
L,S !

p1p2g data after final cuts. A very clean signal of 8 669
K0

L,S ! p1p2g events is achieved, with a background of
about 0.5%. Approximately 0.6% of the events in the peak
in Fig. 2 are residual K0

S ! p1p2g decays from K0
S’s

generated at the production target. A total of 4 482 706

(a) (b)

FIG. 2. (a) Mppg distribution of candidate K0
L ! p1p2g

events, all other cuts applied. Arrows indicate final cuts at
Mk 6 8 MeV�c2. (b) Kaon transverse momentum squared (P2

T )
distribution of candidate K0

L ! p1p2g events, all other cuts
applied. The cut on this quantity requires events to be within
the first bin (0.000 250 GeV2�c2) on this plot.
K0
L ! p1p2 events were accumulated for the normaliza-

tion sample with a 0.1% background.
To extract the direct emission form factor, we consider

the distribution in E�
g , the photon energy in the center of

momentum (Fig. 3). We wish to extract the relative contri-
butions of the inner Bremsstrahlung and DE terms, as well

FIG. 3. K0
L ! p1p2g Monte Carlo/data overlay of photon

energy distribution in the center of mass, for the r-propagator
fit result (Table I). Shown also (shaded) are the expected dis-
tributions for pure E1 inner Bremsstrahlung and form-factor-
modified M1 direct emission. The “combined” Monte Carlo
plot shown assumes these two are the only contributions to the
decay.
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as the energy shift of the DE spectrum due to the presence
of a form factor. We assume that E1 IB and form-factor-
modified M1 DE are the only significant contributions to
the decay. We perform a MINUIT [14] x2-minimization fit
to combine Monte Carlo DE and IB E�

g distributions, and
extract the relative DE and IB contributions to the data
as well as the DE form factor. In the fit, the form-factor
parameters (a1�a2 or r and s) and the ratio

f �
GDE

�GDE 1 GIB�
(4)

are allowed to float simultaneously. A x2 is formed from
comparison of the resultant DE 1 IB summed Monte
Carlo histogram with the data, and minimized to obtain
the best fit result.

Table I summarizes the numerical fitting results for the
three form-factor parametrizations. For the Taylor series
parametrization, fits were performed with the quadratic pa-
rameter both fixed at zero (floating a single parameter r1)
and allowed to vary (floating two parameters r2 and s2).
Data Monte Carlo agreement in the E�

g distribution is
shown in Fig. 3, for the r-propagator form. Figure 4 il-
lustrates the expected effect of the various parametrizations
on the pure M1 direct emission spectrum.

We see in the data presented in Table I and Fig. 4
clear evidence for a modification to the pure-M1 DE
spectrum. All fits are good, though the r-propagator
hypothesis stands out slightly: It gives the best x2 for
a single-parameter fit, and the two-parameter fit results
are in good agreement with the values r2 � 22.70 and
s2 � 3.87 obtained by Taylor expanding the r-propagator
form. The size of this energy shift, in particular the need
to take into account terms of second order in E�

g , is not
currently understood within the chiral perturbation theory
model for this decay [11].

Additional contributions to the photon energy spectrum
are expected from CP-violating higher-order multipole
contributions to the direct emission amplitude. One pos-
sible consequence of these multipole terms is the presence
of a charge asymmetry in the p1 versus p2 Dalitz plot
[1]. We exclude asymmetries larger than 2.4% at 90% C.L.
with the present data.

One might also expect a contribution to the E�
g spectrum

from CP-violating E1 DE, which could interfere with the
E1 IB. We have allowed for such a term, by performing a
separate fit in which we assumed an E1 DE amplitude con-
stant in E�
g , and searched for the corresponding interfer-

ence contribution [12] to the E�
g spectrum. The form-factor

parameter and f [see Eq. (4)] are allowed to float simulta-
neously, while fixing the IB rate at its theoretical value of
7.00 3 1023 [1]. Based on this fit, we set an upper limit of
GIN��GDE 1 GIB 1 GIN� # 0.30 (90% C.L.) on the con-
tribution to the decay rate of the CP-violating interference
term. GIN�GALL � 0.30 corresponds to a 22% decrease
in the GDE�GALL ratio.

Background subtraction under the E�
g distribution (with

shape determined by study of P2
T sideband) resulted in no

statistically significant change in either the form-factor pa-
rameter or the DE��DE 1 IB� ratio. Accidental activity
in the detector was also found to have no statistically sig-
nificant effect. The form-factor parameters are found to
have a slight (1.9%) sensitivity to variations of the lower
E�

g cutoff (nominally 20 MeV) used in the fit. We also
assign systematic uncertainties of 1.8% due to detector ac-
ceptance, and 1.4% due to the effects of uncertainties in
the calorimeter photon energy scale.

Note (Table I) that the measured DE��DE 1 IB� ra-
tio is insensitive to the particular choice of form-factor
parametrization. Uncertainty in the detector acceptance
contributes a 0.7% systematic uncertainty to this ratio,
while variations in analysis cuts contribute 0.6%. The sys-
tematic uncertainty due to the calorimeter photon energy
scale is 0.2%.

We find the absolute K0
L ! p1p2g branching ratio

by normalizing the signal to the K0
L ! p1p2 channel.

We determine the ratio of K0
L ! p1p2�K0

L ! p1p2g

acceptances using a Monte Carlo simulation of the full
detector and offline analysis criteria. Based on this, we cal-
culate G�K0

L ! p1p2g��G�K0
L ! p1p2� � �20.8 6

0.2 stat 6 0.2 syst� 3 1023 for K0
L ! p1p2g events

with E�
g . 20 MeV. The systematic uncertainty is due

primarily to the effects of K0
S contamination in the vacuum

beam. Assuming no contribution from interference and
using the DE��DE 1 IB� result from Table I, we obtain
the final p1p2-normalized branching ratios �14.2 6

0.2 6 0.2� 3 1023 for direct emission and �6.6 6 0.2 6

0.2� 3 1023 for inner Bremsstrahlung.
Our measured IB branching ratio is consistent with both

the QED prediction of 7.00 3 1023 and the most recent
experimental result of FNAL E731 [10]; �7.3 6 0.4� 3

1023, based on a sample of 3 136 K0
L ! p1p2g events.

The DE��DE 1 IB� ratio is also in good agreement with
TABLE I. Summary of K0
L ! p1p2g fit results for the three form-factor parametrizations. The first uncertainty is statistical; the

second is systematic.

Quantity r propagator Linear Quadratic

x2�d.o.f. 38.8�27 43.2�27 37.6�26
a1�a2 �20.737 6 0.026 6 0.022� GeV2 · · · · · ·

r · · · 21.739 6 0.062 6 0.052 22.93 6 0.41 6 0.34
s · · · · · · 3.31 6 1.15 6 0.96
f 0.683 6 0.009 6 0.007 0.682 6 0.009 6 0.007 0.684 6 0.011 6 0.007
763
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FIG. 4. Ratio (points) of (IB-subtracted) direct-emission data
to the expectation for a pure M1 E�

g spectrum. Vertical scale is
arbitrary. Shown for comparison are the best-fit results (Table I)
for the r-propagator (solid), linear (dashed), and quadratic
(dotted) form-factor parametrizations. A modification to the
pure-M1 spectrum is clearly supported by the data.

the E731 result of 0.685 6 0.041. The present form-
factor results differ significantly from that reported by
E731 (a1�a2 � 21.8 6 0.2 GeV2) but this discrepancy
has been understood: The E731 a1�a2 form factor was
inferred [15] from the model of Lin and Valencia [8], on
the basis of the measured DE branching ratio, whereas our
results are obtained directly by performing fits to the E�

g

distribution. The underlying datasets in the two experi-
ments are consistent with each other, and a reanalysis of the
E731 data using our method yields results consistent with
ours. The KTeV K0

L ! p1p2g DE form-factor result is
also in good agreement with the result a1�a2 � 20.720 6

0.029 GeV2 extracted from the independent K0
L !

p1p2e1e2 analysis from the KTeV E799 data set [4].
764
In conclusion, we have made the first direct measure-
ments of the K0

L ! p1p2g direct emission form fac-
tor, including a1�a2 � 20.737 6 0.034 GeV2. We find
no evidence for new CP-violating effects in the photon
energy spectrum. Finally, we have made improved mea-
surements of the DE [�14.2 6 0.2 6 0.2� 3 1023] and
IB [�6.6 6 0.2 6 0.2� 3 1023] K0

L ! p1p2g branch-
ing ratios, normalized to the K0

L ! p1p2 channel.
We thank German Valencia and Jusak Tandean for dis-

cussions concerning this work. We gratefully acknowledge
the support of the technical staff of Fermilab and partici-
pating institutions. This work was supported in part by the
U.S. DOE, NSF, and The Ministry of Education and Sci-
ence of Japan.

*To whom correspondence should be addressed.
Electronic address: belz@physics.montana.edu
Permanent address: Montana State University, Bozeman,
Montana 59717.

[1] G. Costa and P. K. Kabir, Nuovo Cimento Soc. Ital. Fis.
51A, 564 (1967).

[2] L. Sehgal and L. Wolfenstein, Phys. Rev. 162, 1362 (1967).
[3] G. D’Ambrosio and G. Isidori, Int. J. Mod. Phys. A13, 1

(1998).
[4] A. Alavi-Harati et al., Phys. Rev. Lett. 84, 408 (2000).
[5] L. Sehgal and M. Wanninger, Phys. Rev. D 46, 1035

(1992); 46, 1035(E) (1992).
[6] P. Heiliger and L. M. Sehgal, Phys. Rev. D 48, 4146 (1993).
[7] J. K. Elwood et al., Phys. Rev. D 52, 5095 (1995); J. K.

Elwood et al., Phys. Rev. D 53, 2855(E) (1996); J. K.
Elwood et al., ibid. 53, 4078 (1996).

[8] Y. C. R. Lin and G. Valencia, Phys. Rev. D 37, 143 (1988).
[9] A. Carroll et al., Phys. Rev. Lett. 44, 529 (1980).

[10] E. J. Ramberg et al., Phys. Rev. Lett. 70, 2525 (1993).
[11] G. Ecker, H. Neufeld, and A. Pich, Nucl. Phys. B413, 321

(1994).
[12] L. Littenberg and G. Valencia, Annu. Rev. Nucl. Part. Sci.

43, 729 (1993).
[13] A. Alavi-Harati et al., Phys. Rev. Lett. 83, 22 (1999).
[14] F. James and M. Roos, Comput. Phys. Commun. 10, 343

(1975).
[15] E. Ramberg (private communication).


