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Vector Manifestation of Chiral Symmetry
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We propose “vector manifestation” (VM) of the Wigner realization of chiral symmetry in which the
symmetry is restored at the critical point by the massless degenerate pion (and its flavor partners) and the
r meson (and its flavor partners) as the chiral partner, in sharp contrast to the traditional manifestation
á la the linear sigma model where the symmetry is restored by the degenerate pion and the scalar meson.
The application to the chiral phase transition of large Nf QCD is performed using the hidden local
symmetry Lagrangian. Combined with the Wilsonian matching proposed recently, VM determines the
critical number of massless flavors Nf � 5 without much ambiguity.
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Chiral phase transition in QCD is discussed in various
contexts such as the large Nf QCD, QCD at finite tempera-
ture and/or density, etc. In many situations the traditional
linear sigma model-like Wigner realization for the chiral
restoration is assumed. However, the Wigner realization
does not necessarily require the massless degenerate pion
and scalar meson at the critical point. The linear sigma
model is merely consistent with the Wigner realization. It,
therefore, is natural for us to ask the following question: Is
there a manifestation of the Wigner realization other than
that of the linear sigma model? The answer is yes, which
we demonstrate in this paper.

In this paper we propose “vector manifestation” (VM) of
the chiral symmetry as a novel manifestation of the Wigner
realization in which the vector meson denoted by r (r me-
son and its flavor partner) becomes massless at the chiral
phase transition point. Accordingly, the (longitudinal) r

becomes the chiral partner of the Nambu-Goldstone (NG)
boson denoted by p (pion and its flavor partners).

The essence of VM stems from the new matching of
the effective field theory (EFT) with QCD (“Wilsonian
matching”) recently proposed by Ref. [1] in which bare
parameters of the EFT are determined by matching the
current correlators in the EFT with those obtained by
the operator product expansion (OPE) in QCD, based on
the renormalization-group equation (RGE) in the Wilso-
nian sense including the quadratic divergence [2]. The
quadratic divergence was identified with the presence of a
pole of ultraviolet origin at n � 2 in the dimensional regu-
larization. Several physical quantities for p and r were
predicted by the Wilsonian matching in the framework
of the hidden local symmetry (HLS) [3,4] as the EFT, in
excellent agreement with the experiments for Nf � 3,
where Nf is the number of massless flavors [1]. This
encourages us to perform the analysis for larger Nf up to
near the critical point based on the Wilsonian matching.

Actually, the chiral symmetry restoration in Wigner re-
alization should be characterized by the equality of the vec-
tor and axialvector current correlators. When we approach
to the critical point from the broken phase (NG phase), the
axialvector current correlator is still dominated by the
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massless p as the NG boson, while the vector current
correlator is by the massive r. The crucial ingredient of
the Wilsonian matching is the quadratic divergence which
yields the quadratic running of (square of) the decay con-
stant F2

p �m� [2], where m is the renormalization point. It
was actually shown [2] that the order parameter Fp �0�
can become zero for larger Nf even when Fp �L� fi 0,
where Fp �L� is not the order parameter but just a parame-
ter of the bare Lagrangian defined at the cutoff L where
the matching with QCD is made. Then the p contribution
to the axialvector current correlator at m fi 0 persists,
Fp �m� fi 0, even at the critical point where Fp �0� � 0.
Thus the only possibility for this equality to hold at any
m fi 0 is that the r contribution to the vector current cor-
relator also persists at the critical point in such a way that
r yields a massless pole with the current coupling equal
to that of p . Then this restoration, VM, is accompanied by
the degenerate massless p and (longitudinal) r (transverse
r is decoupled from the current correlator at the critical
point, see later discussions).

This is sharply contrasted with the traditional manifes-
tation of the linear sigma model where the equality of the
current corrrelators is trivially satisfied, since the axial-
vector correlator goes to zero due to Fp �m� � 0 indepen-
dently of m (in the absence of the quadratic divergence),
while the vector correlator has no contribution from the
scalar meson and hence is simply zero. Thus the Wilso-
nian matching [which leads to Fp �L� fi 0] excludes the
linear sigma model manifestation in QCD.

In VM we have degenerate massless p and (longitudi-
nal) r at the phase transition point, which are the chiral
partners in the representation of �N2

f 2 1, 1� © �1, N2
f 2 1�

of the chiral SU�Nf�L 3 SU�Nf�R. This representation
corresponds to �8, 1� © �1, 8� for Nf � 3. This is con-
trasted with the linear sigma model-like manifestation in
which p is in the representation of pure �3, 3�� © �3�, 3�
together with the scalar meson. This can be understood
in the good-old-days saturation scheme of the Adler-
Weisberger sum rule for the zero helicity mesons [5]: p

and the (longitudinal) axialvector mesons denoted by A1
(a1 meson and its flavor partners) are an admixture of
2001 The American Physical Society 757
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�8, 1� © �1, 8� and �3, 3�� © �3�, 3�, since the symmetry is
spontaneously broken:

jp� � j�3, 3�� © �3�, 3�� sinc 1 j�8, 1� © �1, 8�� cosc ,

jA1� � j�3, 3�� © �3�, 3�� cosc 2 j�8, 1� © �1, 8�� sinc ,
(1)

where the experimental value of the mixing angle c is
given by approximately c � p�4 [5]. On the other hand,
758
the longitudinal r belongs to �8, 1� © �1, 8� and the scalar
meson to �3, 3�� © �3�, 3�. Then the conventional linear
sigma model-like manifestation corresponds to the limit
c ! p�2, while the VM to the limit c ! 0 in which case
A1 goes to a pure �3, 3�� © �3�, 3�, now degenerate with the
scalar meson in the same representation �3, 3�� © �3�, 3�,
but not with r in �8, 1� © �1, 8�.

Now we formulate the VM more explicitly. Let us write
the axialvector and vector current correlators evaluated by
the OPE in QCD [6]:
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where m is the renormalization scale of QCD, Q the
Euclidean momentum carried by the current, and we ne-
glected O �1�Q8� terms. These expressions are valid in
high energy where the QCD coupling as is small.

Next we consider the expression of the current corre-
lators in the EFT which is valid in the low energy below
the matching scale L. As an EFT to describe the VM
we need a model having both p and r fields. Here we
use the HLS model [3,4] which includes p and r consis-
tently with the chiral symmetry and actually reproduces
experiments nicely through the Wilsonian matching [1].
The axialvector and vector current correlators in the HLS
are well described by the tree contributions with including
O �p4� terms when the momentum is around the matching
scale L [1]:

P
�HLS�
A �Q2� �

F2
p �L�
Q2 2 2z2�L� ,

P
�HLS�
V �Q2� �

F2
s�L� �1 2 2g2�L�z3�L�	

M2
y�L� 1 Q2 2 2z1�L� ,

(3)

where g�L� is the bare HLS gauge coupling, F2
s�L� �

a�L�F2
p �L� is the bare decay constant of the would-be

NG boson s (not to be confused with the scalar meson
in the linear sigma model) absorbed into the HLS gauge
boson, and M2

y�L� � g2�L�F2
s�L� is the bare HLS gauge

boson mass. In Ref. [1] these correlators are matched with
those in Eq. (2) up to the second derivative in terms of Q2

for Q2 � L2. The resultant Wilsonian matching condition
relevant to the present analysis is given by [1]:
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Let us now obtain constraints on the bare parameters
of the HLS in the VM through the Wilsonian matching. At
the critical point the quark condensate �q̄q� vanishes, while
the gluonic condensate � as

p GmnGmn� is independent of the
renormalization point of QCD and hence it is expected
that it does not vanish. Then the right-hand side (RHS) of
Eq. (4) is nonzero, implying that F2

p �L� is nonzero even
at the critical point.

Then how do we know by the bare parameters defined at
L whether or not the chiral symmetry is restored? As we
discussed before, a clue comes from the fact that P

�QCD�
A

and P
�QCD�
V in Eq. (2) agree with each other for any value

of Q2 when the chiral symmetry is restored with �q̄q� � 0.
Thus, we require that P

�HLS�
A and P

�HLS�
V in Eq. (3) agree

with each other for any value of Q2. This agreement is
satisfied only if the following conditions are met:

g�L� ! 0, a�L� ! 1 ,

z1�L� 2 z2�L� ! 0 .
(5)

This is nothing but the VM of the chiral symmetry in terms
of the HLS parameters. Note that a�L� � 1 is satisfied in
QCD already for Nf � 3 in the broken phase [1]. The
first two in Eq. (5) are the values in the Georgi’s vector
limit [7], which was simply assumed in Ref. [2] to be a
consistent way to incorporate the chiral phase transition of
the large Nf QCD into the HLS. Thanks to the Wilsonian
matching it is now clear that Eq. (5) is the precise HLS
expression of the Wigner realization in QCD.

The VM in the HLS is similar to the Georgi’s “vector
realization” [7], but is different in an essential way: The
“vector realization” is claimed to be a different realiza-
tion than either the Wigner or NG realizations in such a
way that the NG boson does exist [Fp�0� fi 0] while the
chiral symmetry is still unbroken. On the contrary, our
VM is precisely the Wigner realization having Fp �0� � 0.
Technically, the bare HLS Lagrangian in the VM coin-
cides with the parameter choice of the Georgi’s vector real-
ization; g�L� � 0, a�L� � 1, and Fp �L� fi 0. However,
an essential difference comes from the Wilsonian RGE’s
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whose quadratic divergence leads to the Wigner realization
with Fp �0� � 0 at the low-energy limit (on-shell of NG
bosons). On the other hand, the vector realization lacking
the quadratic divergence leads to Fp �0� � Fp �L� fi 0.
In contrast to the Georgi’s vector realization, the VM in
the Wigner realization is consistent with the chiral Ward-
Takahashi identity [8,9].

We now examine the chiral symmetry restoration in the
large Nf QCD (Nf ,

11
2 Nc) which was implied by the

fact that the coupling at the infrared fixed point becomes
very small [10]. Such a restoration was indeed observed
by various methods like lattice simulation [11], ladder
Schwinger-Dyson (SD) equation [12,13], dispersion rela-
tion [14], instanton calculus [15], etc. As pointed out in
Ref. [13] the phase transition for large Nf QCD may be
characterized by the “conformal phase transition.” In such
a case the Ginzburg-Landau effective theory (linear sigma
model-like manifestation) simply breaks down. The VM
may be a manifestation of the chiral symmetry restoration
consistent with the conformal phase transition.

The chiral restoration in terms of HLS was obtained in
Ref. [2] without VM and Wilsonian matching. What was
shown in Ref. [2] is that the RGE for F2

p including the
quadratic divergence reduces the value of F2

p �0� (the pole
residue of the massless pion pole) from F2

p �L� (the bare
parameter of the HLS Lagrangian defined at a cutoff scale
L) in such a way that the larger Nf , the smaller the value of
Fp �0� is. It eventually goes to zero, the chiral restoration,
at a certain critical number of Nf .

Now in the VM, the bare parameters are characterized
by the vector limit g�L� � 0 and a�L� � 1 [see Eq. (5)]
which is actually the fixed point of RGE [2]. Then the
VM justifies the previous derivation of the RGE for Fp in
the vector limit which relates the order parameter with the
bare parameter as [2]:
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where we expressed the matching scale by Lf � L�Nf�
since it generally depends on Nf . It should be noticed that
this equation holds only at the critical flavor Ncr

f , and the
left-hand side vanishes at the critical point.

The value of Ncr
f is determined in terms of the parame-

ters in the OPE by combining Eqs. (4) and (6) with taking
�q̄q� � 0. The resultant expression is given by
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Here we estimate this by using the parameters for
Nf � 3 [1]: �L3, LQCD� � �1.2, 0.35� GeV, as � 0.56
and � as

p GmnGmn� � 0.012 GeV4. The result is given by

Ncr
f � 4.9 . (8)

The precise estimation of this will be done by determin-
ing the Nf dependences of the QCD coupling as and Lf
in the forthcoming paper [9]. Here we just quote the result
Ncr

f � 4.8, which is consistent with the above estimate.
To study the critical behaviors of the parameters when

approaching to the critical point, we need to know how the
bare parameters g�Lf ; Nf� and a�Lf ; Nf� approach to the
vector limit Eq. (5). Comparing the difference between
vector and axialvector correlators in Eq. (2) with that in
Eq. (3), we know that the critical behavior of g2�Lf ; Nf�
is given as g2�Lf ; Nf� 
 �q̄q�2. Since we do not know the
scaling of �q̄q� except for the ladder SD approach [16], we
here tentatively adopt the following ansatz on the behavior
of the HLS gauge coupling approaching to zero:

g2�Lf ; Nf� � ḡ2eq, e � 1�Nf 2 1�Ncr
f , (9)

where ḡ is independent of Nf [17]. Moreover, we fix
a�Lf ; Nf� � 1 even off the critical point, since the Wilso-
nian matching conditions with the physical inputs Fp �0� �
88 MeV and mr � 770 MeV leads to a�L� � 1 already
for Nf � 3 [1]. The RGE’s for F2

p and g2 are analytically
solvable for a � 1. A careful analysis [9] leads to that
q in Eq. (9) must satisfy q $ 1 for the consistency. The
resultant critical behaviors of the order parameter and the
mass of r are given by

F2
p �0; Nf��L2

f 
 e ! 0 ,

m2
r�Nf��L2

f 
 e11q ! 0 ,
(10)

which shows that mr approaches to zero faster than Fp .
This is a salient feature of the VM [18].

Let us consider the critical behaviors of the physical
quantities listed in Ref. [1]. The r-g mixing strength gr

and the r-p-p coupling constant grpp go to zero as

gr�mr� � g�mr�F2
p �mr� 
 e11q�2 ! 0 ,

grpp�mr , 0, 0� �
g�mr�

2

F2
p �mr�
F2

p �0�

 eq�2 ! 0 ,

(11)

where a�L� � a�mr� � 1 was used. As discussed in
Ref. [1], the KSRF (I) relation for the low-energy quan-
tities gr�0� � 2g2

rpp �0, 0, 0�F2
p �0� holds as a low energy

theorem of the HLS [4,19,20] for any Nf . The relation for
on-shell quantities is violated by about 10% for Nf � 3
[1]. As Nf goes to Ncr

f , gr�mr� and grpp �mr , 0, 0�
approach to gr�0� and grpp�0, 0, 0�, respectively, and
hence the on-shell KSRF (I) relation becomes more
accurate for larger Nf . On the other hand, the (on-shell)
KSRF (II) relation m2

r � 2g2
rpp �mr , 0, 0�F2

p �0� becomes
less accurate. Near the critical flavor it reads as m2

r �
4g2

rpp �mr , 0, 0�F2
p �0� ! 0.

Several comments are in order:
In the VM both the axialvector and vector current cor-

relators in Eq. (3) take the form of F2
p�L��Q2 2 2z2�L�.

For the axialvector current correlator, the first term
F2

p �L��Q2 comes from the p-exchange contribution,
while for the vector current correlator it can be easily
understood as the s (would-be NG boson absorbed into
r)-exchange contribution in the Rj-like gauge. Thus only
759
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the longitudinal r couples to the vector current, and the
transverse r with the helicity 61, which belongs to the
representation �Nf , N�

f � © �N�
f , Nf�, is decoupled from it.

This can be also seen in the unitary gauge [9].
The parameters L10�mr� and L9�mr� defined in Ref. [1]

diverge as Nf approaches to Ncr
f . However, we should note

that, even for Nf � 3, both L10�m� and L9�m� have the
infrared logarithmic divergences when we take m ! 0 in
the running obtained by the chiral perturbation theory [21].
Thus we need more careful treatment of these quantities for
large Nf . This is beyond the scope of this paper.

The A1 in the VM is resolved and/or decoupled from the
axialvector current near the critical flavor since there is no
contribution in the vector current correlator to be matched
with the axialvector current correlator. As to the scalar
meson [22], although the mass is smaller than the match-
ing scale adopted in Ref. [1] for Nf � 3 [23], we expect
that the scalar meson is also resolved and/or decoupled
near the chiral phase transition point, since it is in the
�Nf , N�

f � © �N�
f , Nf� representation together with the A1

in the VM.
In this paper we applied the VM to the chiral restoration

in the large Nf QCD. It may be checked by the lattice
simulation: The vanishing ratio mr�Fp �0� is a clear indi-
cation of the VM.

The VM may be applied to other chiral phase transi-
tions such as the one at finite temperature and/or density.
In such a case, the position of the r peak of the dilep-
ton spectrum would move to the lower energy region in
accord with the picture shown in Ref. [24], and Eqs. (10)
and (11) would further imply smaller r width (G�mr 

g2

rpp 
 eq) and larger peak value [GeeGpp�G2 
 g2
r�

�g2
rppm4

r� 
 1�e2q] near the critical point. If it is really
the case, these would be clear signals of VM tested in the
future experiments.

The VM studied in this paper may be applied to the
models for the composite W and Z. Our analysis shows
that the mass of the composite vector boson approaches
to zero faster than the order parameter, which is fixed to
the electroweak symmetry breaking scale, near the critical
point. The VM may also be applied to the technicolor with
light techni-r.
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