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Nonlinear Transition to a Global Mode for Traveling-Wave Instability in a Finite box
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Using hydrothermal waves in a long narrow channel as an ideal supercritical nonlinear wave system,
we study the critical behavior at onset for a finite cell with poorly reflecting boundaries. We observe a
spatially nonuniform global eigenmode localized near the end of the cell and associated with a wave front
invading the cell. The onset of this mode— corresponding to the absolute instability transition —is shifted
above the value corresponding to convective instability, measured in an annular channel with periodic
boundary conditions. Experimental critical exponents are discussed in the framework of existing theo-
retical descriptions and quantitative comparison with the complex Ginzburg-Landau model is attempted.
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Since their first observations in large boxes, for example,
in convecting binary fluids [1] or shear flows [2], nonlinear
traveling waves have exhibited a fascinating variety of
behaviors and patterns. We believe that in such systems
the main source of richness near onset is the convective/
absolute transition [3,4] for nonzero group velocity
waves. Most 1D physical systems produce right- and left-
propagating nonlinear waves [5]. Nonlinear competition
and reflections at the boundaries lead to a central-source
pattern [6—9] due to counterpropagating exponentially
growing waves as the first global mode at onset. The
global mode may also be produced by the convective/
absolute transition. So far, this phenomenon was described
for single waves [3,10,11], i.e., with broken left-right
symmetry. Among systems, thermocapillary flows and, in
particular, hydrothermal waves [12—15] may appear as the
simplest models, owing to their supercritical bifurcation.
This Letter is devoted to the case where two competing
waves interact in a low-reflection boundaries cell. The first
global mode, instead of being constructed by successive
reflections in the convective regime, results thus from
the absolute instability regime, high above the convective
onset. In this region, we report the presence of sharp
eigenmodes, precisely localized near the downstream
boundary. These wall modes are similar to the solutions
of perturbation analysis [3,10]. Furthermore, a nearly uni-
form nonlinearly saturated wave invades the cell at higher
constraint by front propagation. This study addresses the
delicate question of linear or nonlinear selection of global
modes [16].

Experimental setup.— A narrow rectangular convection
channel (Fig. 1) with a glass bottom and vertical copper

PACS numbers: 47.35.+1, 47.20.Dr, 47.27.Te, 47.54.+r

walls [12] is filled with a thin layer, » = (1.7 = 0.1) mm,
of silicon oil of viscosity v =0.65cS (1cS =
1072 cm?/s) and Prandtl number P = 10. The fluid sur-
face is free. The channel is 10 mm wide and 250 mm long.
Plexiglas blocks are inserted in the channel to reduce the
length to L = 180 mm, i.e., aspectratio I' = L/h = 100.
The copper walls are thermoregulated by fluid circula-
tions. Thermocouples allow accurate measurements of the
temperature difference AT across the channel, typically
established with a =15 mK stability. Convective patterns
are observed through the glass bottom by shadowgraphy.
Images are digitized and processed numerically as spa-
tiotemporal diagrams of 512 data points extracted from
the central line and plotted along time.

Basic flow and wave model.—The convective flow cre-
ated by a horizontal thermal gradient has been previously
described [12,14]. We use the same device as Daviaud and
Vince except that we reduced the length in order to view
the whole cell through a 200 mm lens. Data were also col-
lected in a curved annular channel of 503 mm perimeter,
i.e., with periodic boundary conditions, of identical 10 mm
width, at the same # = 1.7 mm fluid height [14,17]. Be-
cause the curvature is negligible, both wave pattern reports
can be directly connected. So let us summarize the results
for annular geometry.

The first bifurcation of the basic thermocapillary
flow towards hydrothermal waves occurs at ATy =
(3.1 = 0.1) K [17]. The bifurcated pattern for hydrother-
mal waves is a uniform-amplitude traveling wave of
critical wave number ky = (0.684 + 0.003) mm~! and
critical frequency fo = 0.237 Hz [17]. The wave 6(x, 1)
is modeled by two slowly varying amplitudes A and B

| obeying two complex Ginzburg-Landau (CGL) equations:

0(x,t) = AX,T)expi(wot — kox) + B(X,T)expi(wot + kox) + c.c. + -+,
T0(Ar + sAx) = e(l + ico)A + £3(1 + ic))Axx — (1 + ic2) |APA — (A + iu)|BI*A,
To(Br — sBx) = €(1 + ico)B + &(1 + ic1)Bxx — (1 + icy) |BI*B — (A + iw)|AI’B,

where € = AT/ATy — 1. The group velocity s =
(0.895 = 0.01) mm™! and the correlation length &, =
(5.1 = 0.3) mm have been measured in the annulus [17].
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Perturbations are verified to travel at the velocity s in the
rectangular box as well. Let us note that nondimensional
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FIG. 1.

Schematics of the channel with photograph of traveling
hydrothermal waves and acquisition line (- - -).

lengths L* = L/&, are 35 and 98 for the rectangular
and the annular channels, respectively. We have shown
5s = 79 = 15s and obtained some relations between cy,
c1, and c;. The coupling coefficient A must be bigger than
one because traveling waves are selected against standing
waves [18]. From the practical point of view, we measure
amplitude profiles |A(X)| and |B(X)|, local wave numbers,
and frequency. For this, we perform a temporal Hilbert
transform [6,14] on the spatiotemporal data and then sepa-
rate the right and left Fourier components without spatial
filtering to keep the smallest scales of the envelopes.
Results in finite cell—Typical amplitude profiles for A
and B are shown in Fig. 2 for various temperature dif-
ferences. For AT < AT, = 3.65K (e < ¢, = 0.177),
the profiles are flat A = B = 0. Just above onset, for
AT = 3.66 K, we observe a symmetric wave pattern. The
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FIG. 2. Amplitude profiles of the traveling waves at different
€. Top figures present right (A) and left (B) amplitude profiles
for € = 0.18 (AT = 3.66 K) and € = 0.21 (AT = 3.75 K).
The bottom figure presents the dominant wave for growing € up
to 0.53 (AT = 4.75 K). All dominant waves are represented as
right-traveling waves. Following the wave, we encounter three
domains: an exponential growth or front, a saturated plateau (for
larger €), and a sharp wall mode.
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waves compete up to € = (.25, above which the small-
est wave becomes negligible with respect to the dominant
wave. The wave envelope of the latter may be separated
in three domains: just after the wall X = 0, where both
amplitudes are nearly zero, a front with exponential grow-
ing amplitude, then a plateau, and, finally, just before the
end wall X = L, a sharp wall mode where the maximum
amplitude is reached. The frequency and wave number are
uniform along the cell except in the boundary layer and
match the annulus critical values at onset (Fig. 3). Note
that, for € = (0.3, we observe quasiperiodic states corre-
sponding to a beating of minor and major waves [6,8,9].

In the following we choose, for clarity, to present the
major wave as A (right-traveling) and the minor wave as B
(left-traveling), whereas the symmetric situation has been
observed with equal probability. The plateau is vanishing
in the threshold vicinity and so cannot be used to trace
back the critical behavior. For a quantitative description of
the bifurcation let us thus measure properties of the wall
mode and the front regions.

Let us first look for the order parameter of the transition.
The amplitude being nonuniform, two quantities are easily
extracted: the mean and the maximum value of the ampli-
tude profile. The average amplitude (|A(X)|)o,.] (not rep-
resented) evolves linearly with respect to € (after a small
finite step at €,). On the other hand, the maximum A,
which occurs near the downstream boundary, at the top
of the wall mode, behaves like (e — €,)'/? (Fig. 4a). We
believe it to be the order parameter of this supercritical bi-
furcation. The ratio of the two amplitudes A and B, plotted
in the inset, behaves like exp(—a 6:“) with @ = 3.0 and
denotes a strong competition between the two waves.

In order to modelize the spatial structure of the waves
and the eigenmode near threshold, we measured the spa-
tial evolution of the envelope |A(X)|. The front observed
just at the wave source can be described by an exponential
envelope e¢r X with '3 ;1 growth rate. The characteristic
length &7 (Fig. 4b) appears thus, at first sight, to diverge
at €, with critical exponent —1. At the other extremity,
in the wave sink, the amplitude decreases and can be mod-
elized by e~ €5 X where &' = (39 = 4)L!. Between the
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FIG. 3. Frequency and wave number vs AT. Horizontal lines
show the critical values from annular cell data.
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FIG. 4. (a) Modulus of the wall mode’s amplitude or maxi-
mum amplitude vs €. Dominant wave A ([J) fitted by (e —
€,)"/? (solid line) and minor wave B (+). The inset presents
the amplitude ratio B/A for mean amplitude over the cell (O)
and maximum amplitudes (+). The solid line is an exponential
fit. (b) Spatial growth rate &7' of the envelope of the waves
in the front region vs €. Solid and dashed lines are linear—

&7 o (e — e€,)—and logarithmic fits, respectively (see text
and Fig. 5).

plateau and the maximum, a small region in X as well
as in e, corresponding to the growing part of the wall
mode, may also be fitted exponentially by efwX where
Ewm = (15 = 1.5)L ™. These last two values do not sig-
nificantly vary with e.

Interpretation.— Three points need to be discussed and
quantitatively compared to theoretical knowledge: (i) the
onset shift between the annular cell and rectangular cell
experiments, (ii) the shape of the wall mode, and (iii) the
critical behavior of the front.

The shift of the onset is very large: 0.18 in € or 0.55 K.
Usual finite size effects are known to be of order (7/L*)?,
i.e., 0.001 and 0.01 in € for the L* = 98 annulus and
the L* = 35 rectangular channel, respectively. This law
has been verified with a good accuracy [19], in a variable
rectangular cell. Another difference between the two cells
is the curvature. This can be quantified by the stability
analysis of the thermocapillary problem [15]: the annulus
curvature increases the onset by 0.03 in €. At this level,
if the onset is observed for €. = 0 in the annulus it is
expected around —0.03 in the rectangle. None of these
effects explains the 0.18 shift.

In the periodic channel, once the convective onset is
crossed, a traveling wave (TW) self-organizes after succes-
sive rounds in the cell: the basic uniform TW is a global
mode. So the convective onset is also the absolute onset
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FIG. 5. Spatial growth length &£ of the envelope of the waves
in the front region vs In(e — €,).

[3]. This corresponds mathematically to the static problem
in a frame moving at group velocity s. In the nonperiodic
channel, however, s is finite and the problem has to be
solved in the laboratory frame. The first global mode, or
self-excited wave, is observed above €, = 0.18. Below €,,
no waves are observed and we unsuccessfully tried to trig-
ger wave trains with mechanical perturbations (but not with
thermal perturbations which should be more efficient [13]).

A mechanism describing the appearance of a global
mode is due to Cross [8,9] who considered the construc-
tive effect of reflections at the boundaries. This model
describes very carefully the onset of oscillatory instabil-
ity in low-Prandtl-number fluids [6]. For finite reflec-
tion coefficient r, a global mode is predicted above €, =
—s7oL~'In|r|. If  is zero or very small, another mecha-
nism [3,10], but for a single wave, is to be considered: the
global mode will first appear as the wave becomes abso-
lutely unstable, i.e., above €,,s = 1%;(3—2)2 We need to
compare €, with €, and €,ps.

Whereas Croquette and Williams observed the first
mechanism with €, = 0.06 < €, = 0.39 we believe
our system to exhibit the second mechanism, i.e., €, =
€aps < €,. This opinion is supported by the following
set of qualitative and quantitative observations. The
first argument for a low-reflection coefficient |r| is the
vanishing of the amplitude at X =0 and X = L. A
tentative direct measurement confirms |r| to be smaller
than 0.1. Quantitatively, our hypothesis €, = €45 < €,
leads to |r| being smaller than a value located between
0.001 and 0.1, depending on 7y’s value.

The experimental sequence of competition between
right and left wave with e (Fig. 2) is symmetric state —
asymmetric  state — quasiperiodic  blinking state —
“filling” state, i.e., a single wave. This sequence fits the de-
scription in the case of a reflection-controlled mechanism
[8,9] except that the initial symmetrical pattern exists only
for e = €, and not over a finite range as in [6,9].

Let us now discuss the spatial envelope of the dominant
wave. For Cross, the spatial growth rate of the global mode
is &, = s7¢/€, diverging at € = 0, not above. Wall modes
are neither predicted nor observed numerically. However,
for the absolute-instability mechanism, a wave shape is
reported, which looks very similar to our experimental
data (see Figs. 2—4 of Ref. [10]): a localized wall mode at
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onset on which an invading front superimposes at higher
€. The main difference between our experimental data and
these predictions is the simultaneous appearance— within
the experimental error bar— of the front and the wall mode
at €,, both structures being superimposed at any €. The
global mode eigenfunction [3,10] is

FX) = Uit ginp X
L
265

=(1+ clz)
STo

where &
Quantitative comparison leads to a coherent description:
assuming the experimental wall mode is the global mode
eigenfunction f(X), we identify €, with the absolute
threshold €,ps, éwm With €aps, and compare wave num-
bers at onset. Then, using the known CGL coefficients we
fitto = (5 = 1) sand ¢; = 0 = 0.5. This value of 7 is
very close to the viscous time h? /v = 4.5 s. Note that,
instead of linear attenuation at the downstream boundary
due to the sinus in the eigenmode expression, we see an
exponential decay, maybe due to nonlinear interaction
between counterpropagating waves. Nevertheless, the
damping in such a sink is expected to be of order of
s70é0 > = 0.17 mm~' = 31L"! [8], in reasonable agree-
ment with the measured &' = (39 = 4)L~!.

Owing to the above results, we conclude that the global
mode results from absolute instability transitions rather
than from wave reflections.

Let us now discuss the front’s critical behavior. The
spatial growth scale behaves approximately as (€ — €,) !
(Fig. 4b, linear fit). But, the first points of Fig. 4b show a
finite jump at the transition: from 1/& = O at e = 0.177
to (1.3 = 0.1)L™" at € = 0.181. This quantifies the fact
that the front is always present in the cell. So, we want to
test other scaling laws. Following Chomaz and Couairon
[16], who studied the linear or nonlinear nature of the con-
vective/absolute transition, we checked for (e — €,)~!/2
(linear transition) and In(e — €,) (nonlinear transition)
dependency for £r. The (e — €,)~ /2 formula may be
considered to fit the data very near the threshold, but the va-
lidity domain is very narrow and the fit’s confidence level
is very low. The logarithmic behavior is shown in Fig. 5.
It appears to describe particularly well the threshold region
and above up to the “saturation” region where & is limited
by zero. This fit is the best of the three tested and we may
conclude to a nonlinear convective/absolute transition with

Er/L = a — Bln(e — €,).

So, the coexistence of front mode and wall mode may be
understood easily owing to the different critical behavior,
square root for the wall mode vs logarithm for the front
mode, the latter dominating at lowest €. A similar criti-
cal behavior at the convective/absolute transition has been
recently reported in an open flow: a Kelvin-Helmholtz un-
stable sheared interface [11].
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We have presented the first complete observation of the
global mode at absolute instability threshold for traveling
waves in a finite closed channel. Qualitative and quantita-
tive comparisons have been performed to distinguish this
from the case of a reflection-controlled global mode. The
characterization of the critical behaviors has revealed that
this transition is fully nonlinear in the sense of Chomaz
and Couairon [16]. For higher control parameter values,
we observe a quasi-one-directional traveling pattern. This
new wave train undergoes Eckhaus secondary instability
leading to traveling modulations. These modulated pat-
terns behave as nonlinear fronts whose dynamics reveals
convective and absolute regimes as well [20].
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