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Nonlinear Magnetization Dynamics under Circularly Polarized Field
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Exact analytical results are presented for the nonlinear large motion of the magnetization vector in a
body with uniaxial symmetry subject to a circularly polarized field. The absence of chaos, the existence of
pure time-harmonic magnetization modes with no generation of higher-order harmonics, and the existence
of quasiperiodic magnetization modes with spontaneous breaking of the rotational symmetry are proven.
Application to ferromagnetic resonance and connection with the Stoner-Wohlfarth model are discussed.
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A free magnetic moment m precesses in the magnetic
field H at the rate dm�dt � 2gm 3 H (g . 0 for
electronic moments). A similar equation is at the root
of the dynamics of the local magnetization M�r, t� of a
magnetized medium: ≠M�≠t � 2gM 3 Heff. In this
case, the effective field Heff is the (variational) derivative
of the system free energy with respect to the magneti-
zation. The motion conserves jMj and is nondissipative
�Heff ? ≠M�≠t � 0�. Energy dissipation can be taken
into account by additional phenomenological terms,
chosen through heuristic considerations. In ferromagnets,
exchange heavily penalizes states where jMj deviates from
the thermodynamic saturation magnetization Ms. Thus,
descriptions where jMj is conserved are of particular inter-
est. In the Landau-Lifshitz equation, ≠M�≠t � 2gM 3

Heff 2 g�a�Ms�M 3 �M 3 Heff�, whereas ≠M�≠t �
2gM 3 Heff 1 �a�Ms�M 3 ≠M�≠t in the form pro-
posed by Gilbert [1]. The two equations are mathemati-
cally equivalent. Gilbert’s approach amounts to adding a
Rayleigh dissipation function proportional to a�≠M�≠t�2

to the Lagrangian of the system [2]. In the rest of this
Letter, reference will be made to the dimensionless
Landau-Lifshitz-Gilbert (LLG) equation

≠m
≠t

2 am 3
≠m
≠t

� 2m 3 heff , (1)

where time is measured in units of �gMs�21, heff �
Heff�Ms, m � M�Ms, and m has zero normal derivative
at the body surface. It will be assumed that heff � ha 1

hM 1 hAN 1 hEX, where the applied field ha is a given
spatially uniform function of time, whereas the other terms
represent the magnetostatic, anisotropy, and exchange
fields, respectively.

The LLG equation is employed in most studies of the
dynamics of ferromagnetic media. In particular, it plays a
crucial role in the description of ferromagnetic resonance
[3] and of magnetization switching in thin films [4]. The
limits under which the phenomenological introduction of
damping is acceptable and is in agreement with micro-
scopic models of spin dynamics are still under study [1,5].
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On the other hand, there exist few exact results about the
properties of truly nonlinear large motions of M. It is
usually felt that the onset of coupled nonuniform modes
should play an important role in the complex magneti-
zation behavior observed in experiments [6,7], and that the
appearance of chaos should be expected under broad con-
ditions [3,8].

In this Letter it is shown that significant progress in
the investigation of these issues can be achieved by con-
sidering the case where the system described by Eq. (1)
exhibits rotational symmetry around a certain axis and the
external field is circularly polarized in the perpendicular
plane. Some aspects of this problem were considered in
[9], without recognizing, however, the far-reaching impli-
cations of the symmetry assumption. In fact, it will be
shown that, as a consequence of rotational invariance, there
always exist exact uniform-mode solutions of Eq. (1)
coupled to magnetostatic Maxwell equations. These
modes are expected to be the main modes excited by uni-
form rotating fields whenever surface anisotropy is negli-
gible and the excitation conditions preclude the existence
of magnetic domains, nonuniform resonance modes [10],
and Suhl’s instabilities [6]. Interestingly, these uniform
modes represent pure time-harmonic magnetization modes
with no generation of higher-order harmonics despite the
strongly nonlinear character of the problem. In addition,
it will be shown that quasiperiodic magnetization modes,
with spontaneous breaking of the rotational symmetry,
necessarily set in when none of the time-harmonic modes
is stable. From a slightly different perspective, the study
of these modes represents the natural dynamic gener-
alization of the classical Stoner-Wohlfarth model [11].
Several distinctive features, as, for example, the concept
of astroid, are preserved by uniform-mode dynamics
under rotating field. Finally, it is interesting to note that
the rotational symmetry analysis may lead to substantial
simplifications even in problems where exchange plays a
role, as in conducting thin films [12].

Rotational symmetry results in the following conditions
on the dynamics: (i) the dissipation parameter a of Eq. (1)
© 2001 The American Physical Society
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is a positively defined function of heff and m invariant with
respect to rotations of the reference frame about the z axis;
(ii) the body is of spheroidal shape, with symmetry axis
along z; (iii) crystal anisotropy is uniaxial, i.e., hAN �
�2K1�m0M2

s �ez (ez is the unit vector along z); (iv) the
external field is of the form ha�t� � ha��t� 1 hazez (�
indicates components in the plane perpendicular to ez),
where haz is constant, whereas ha��t� has constant ampli-
tude ha� and is rotated with angular frequency v. For uni-
form modes, hEX � 0 and hM � 2N�m� 2 Nzmzez ,
where Nz and N� represent the z and � demagnetizing
factors, respectively. Therefore, apart from terms pro-
portional to m that do not contribute to Eq. (1), heff �
ha��t� 1 �haz 1 keffmz�ez , where keff � 2K1�m0M2

s 1

N� 2 Nz . As a consequence of rotational symmetry, the
description becomes remarkably simpler by passing to the
rotating frame of reference in which the external field is
stationary, and by using spherical coordinates (u, f) for
m. In other words, one looks for m in the form: mx �
sinu cos�vt 2 f�, my � sinu sin�vt 2 f�, mz � cosu,
where u and f are functions of time and f measures the
lag of m� with respect to ha�. In terms of (u, f), Eq. (1)
becomes

du

dt
2 a sinu

df

dt
� keff�b� sinf 2 V sinu� , (2)

a
du

dt
1 sinu

df

dt
� keff�b� cosu cosf

2 �bz 1 cosu� sinu� , (3)

where bz � �haz 2 v��keff, b� � ha��keff, V �
av�keff, and a is now a function of (u, f) with no
explicit dependence on time.

Equations (2) and (3) describe an autonomous dynami-
cal system on the unit sphere. This fact has some remark-
able consequences on uniform-mode dynamics.

(i) There must exist equilibrium states for the system,
because the dm�dt vector field on the sphere necessarily
has singular points [13]. An equilibrium state in the rotat-
ing frame represents a magnetization mode rigidly rotat-
ing with the field. Therefore, the problem admits exact
time-harmonic solutions, with no generation of higher-
order harmonics, in spite of the inherent nonlinear char-
acter of the dynamics. These solutions will be termed
P-modes.

(ii) The number of P-modes is at least two and is even
under all circumstances. This conclusion derives from
the Poincaré index theorem [13], which asserts that the
number of nodes and foci minus the number of saddles of
any autonomous dynamics on the sphere is equal to two.

(iii) The onset of chaos is precluded, because the phase
space is two dimensional [14].

Exact analytical results are obtained when a and conse-
quently V are just constants. P-modes are calculated by
equating the right-hand side (rhs) of Eqs. (2) and (3) to
zero. By eliminating f, one finds that mz � cosu obeys
the fourth-order polynomial equation

b2
�

1 2 m2
z

2
�bz 1 mz�2

m2
z

2 V2 � 0 . (4)

All real mz zeros of Eq. (4) are located in the interval
21 # mz # 1. In general, one may expect zero, two, or
four of them. However, the case of no zeros is forbidden
by the index theorem [13]. Therefore, only two situations
are possible, one with two and one with four P-modes.
Interestingly, although Eqs. (2) and (3) depend on five pa-
rameters, i.e., (bz , b�, V, a, keff), only (bz , jb�j, jVj) ap-
pear in Eq. (4). Hence, bodies characterized by different
values of (a, keff) will exhibit identical P-modes whenever
the set (bz , jb�j, jVj) takes identical values.

Equation (4) describes a hyperbolic line in the (bz , jb�j)
plane, a line that can be represented as

bz � mz�y 2 1� , (5)

jb�j �
q

�1 2 m2
z � �y2 1 V2� , (6)

with 2` , y , 1`. Comparison with the rhs of Eqs. (2)
and (3) shows that y � V cotf. Equations (5) and (6)
define the field conditions that will produce a P-mode with
any desired (u, f) values.

P-mode stability can be studied by considering small
deviations from equilibrium [Du exp�lt�, Df exp�lt�] and
by applying first-order perturbation theory to Eqs. (2) and
(3), in order to reduce them to the standard eigenvalue form
Ax � lx, with x � �Du, Df�. Stability is controlled by
the trace and the determinant of the matrix A. After some
algebra, one finds

detA �
k

2
eff

1 1 a2 �y2 2 �1 2 m2
z �y 1 V2m2

z � , (7)

trA � 2
2akeff

1 1 a2

∑
y 2

1 2 m2
z

2
1

Vmz

a

∏
, (8)

where both mz � cosu and V cotf refer to the particu-
lar P-mode considered. Three situations are of main
interest [15]: stable nodes or foci (trA , 0, detA . 0);
unstable nodes or foci (trA . 0, detA . 0); saddles
(detA , 0). The sign of detA is directly related to the num-
ber of P-modes. In fact, according to the index theorem
[13], when two P-modes are present they are both nodes
or foci of the dynamics (detA . 0), whereas when four of
them are present three are nodes or foci and one is a saddle
(detA , 0). More detailed information is obtained by
drawing, in the (u, f) plane, the lines (detA � 0) and
(trA � 0, detA . 0), which delimit the regions of exis-
tence of stable, unstable, and saddle P-modes (Fig. 1).

Stable nodes or foci are the only P-modes that can be
physically realized. When no P-mode is stable, there will
exist (at least) one attracting limit cycle in the dynamics
(Poincaré-Bendixson theorem [14]). A limit cycle repre-
sents a periodic m motion along a closed path on the unit
725
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FIG. 1. (a) Example of a LLG phase portrait in the rotating
frame for a thin film with (a � 0.05, keff � 21) at (haz � 0.6,
ha� � 0.15, v � 1.1). The solid points represent stable �s�,
unstable �u�, and saddle �d� P-modes. The bold continuous
lines are attracting �a� and repelling �r� limit cycles. (b) Lines
(detA � 0) and (trA � 0, detA . 0) dividing 0 # f # p
hemisphere into regions (S, U, D) of existence of stable, un-
stable, and saddle P-modes, respectively. (c) Q-mode associ-
ated with limit cycle a, as it appears in the laboratory frame.

sphere. This conclusion holds in the rotating frame. In
the laboratory frame, the periodic motion along the limit
cycle has to be combined with the rotation of the refer-
ence frame and this results in a quasiperiodic magneti-
zation mode (Q-mode). The quasiperiodicity arises be-
cause the external field and the limit cycle periods are not
usually commensurable. Q-modes spontaneously break
the rotational symmetry of the problem by a definite choice
for the initial phase of the limit cycle motion.

The following argument proves that Q-modes are nec-
essarily present under appropriate conditions. Let us con-
sider the limit jb�j ! 0 of small rotating field amplitudes.
According to Eqs. (5)–(8), in this limit P-modes are char-
acterized by m2

z ! 1, detA � �y2 1 V2���1 1 a2�, and
trA � 22a�keff 6 haz���1 1 a2�. Only two P-modes
are possible, because detA . 0. Furthermore, the sign of
trA is opposite to that of keff for both modes in the inter-
val jhazj , jkeffj. Therefore both P-modes are unstable
for any system with negative keff and a Q-mode will nec-
essarily set in. This formal result has an intuitive physi-
cal interpretation. Let us assume that keff , 0 and that
only the field haz , jkeffj is applied, i.e., ha� � 0. In
this case, there exists a continuous set of static equilib-
rium states with cosu � haz�jkeffj and arbitrary f. In the
rotating frame, these states appear as a limit cycle of pe-
riod 2p�v. When a small rotating field ha� is applied,
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the static state is changed into a quasiperiodic motion. In
fact, the rotating field is not strong enough to force m
into synchronous rotation. The magnetization follows the
field only for a small part of each rotation period and then
periodically falls off synchronism. The result is a slow av-
erage m precession around the z axis, accompanied by a
nutation of frequency v (see Fig. 1). When ha� exceeds
only a certain threshold, m gets locked to the field and the
Q-mode is destroyed in favor of a stable P-mode.

Figure 1 shows an example of an LLG phase portrait
in the rotating frame, calculated by numerical integration
of Eqs. (2) and (3). The portrait structure is remarkably
rich, with four P-modes and two Q-modes. In particular,
stable P-modes and Q-modes coexist, a fact that will
result in experiments in hysteretic jumps between P-type
and Q-type responses. We have found that a surpris-
ingly broad variety of phase portraits is present in the
dynamics. The analysis of this aspect is of considerable
complexity and will be presented in detail elsewhere. An
example of a bifurcation diagram is shown in Fig. 2. Phase
portraits with two or four P-modes and zero, one, or two
Q-modes are present in various combinations, separated
by bifurcation lines of saddle-node, Andronov-Hopf,
homoclinic-saddle-connection, or semistable-limit-cycle
types [15,16]. At a saddle-node bifurcation point, a
saddle-node pair of P-modes is created or destroyed.
This can occur only if detA � 0. By equating Eq. (7) to
zero and by plugging the two ensuing y�mz� roots into
Eqs. (5) and (6), one gets the continuous line of Fig. 2.
In an Andronov-Hopf bifurcation, a nonsaddle P-mode
changes from stable to unstable or vice versa, with the
simultaneous creation or destruction of a limit cycle. This
bifurcation occurs for (trA � 0, detA . 0) (dashed lines
in Fig. 2). Limit cycles are also created or destroyed in
homoclinic-saddle-connection and semistable-limit-cycle
bifurcations. However, these bifurcations have a global

FIG. 2. Bifurcation diagram in (haz , ha�) control plane for
a thin film with (a � 0.05, keff � 21) at v � 1.1. Saddle-
node (solid line), Andronov-Hopf (dashed line), homoclinic-
saddle-connection (open squares), and semistable-limit-cycle
(solid squares) bifurcation lines are shown. Values 1 and 2 ex-
press the number of Q-modes present in different regions. The
solid circle shows the location of the phase portrait in Fig. 1.
Inset: detail of region relevant to ferromagnetic resonance. The
dashed line is the locus of maximum absorbed power.
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character, not expressible in terms of local conditions on
individual P-modes [15,16].

The (detA � 0) line delimits the (haz , ha�) region,
where four P-modes exist. This region is the dynamic
generalization of the Stoner-Wohlfarth astroid [11] and
reduces to it in the limit v ! 0. In fact, by inserting the
two roots of Eq. (7) into Eqs. (5) and (6) and by taking
the limit v ! 0, one obtains the two lines [bz � 2m3

z ,
jb�j � �1 2 m2

z �3�2] and [bz � 2mz , jb�j � 0]. The
former is just the astroid line b2�3

z 1 jb�j
2�3 � 1.

The region around the lower right-hand corner of the
dynamic astroid of Fig. 2 corresponds to the physical con-
ditions under which ferromagnetic resonance experiments
[3] are carried out: ha� ø 1, haz 1 keff � v. Nonlin-
earities may affect the resonant response even under uni-
form magnetization, in particular through the appearance
of foldover [17] in the absorbed power p. At fixed v,
this results in the fact that the function p�haz� ceases to be
single valued and the system irreversibly jumps from high
to low absorbed power or vice versa when haz is increased
or decreased. Foldover is possible when four P-modes
exist and two of them are stable. The irreversible jumps
take place at the (detA � 0) boundary, when one of the
two stable modes is destroyed by the saddle-node bifurca-
tion. The p�haz� function can be exactly calculated [9]. A
P-mode is characterized by [see Eq. (4)]

haz�mz� � v 2 keffmz 6 mz

s
h2

a�

1 2 m2
z

2 a2v2 ,

(9)

whereas p�mz� � ha� ? dm��dt � av2�1 2 m2
z �. The

desired p�haz� curve can be expressed in the parametric
form [haz�mz�, p�mz�], with mz as an independent variable
decreasing from one down to the value where the square
root term of Eq. (9) becomes zero and the absorbed power
reaches its maximum. According to Eq. (9), this occurs for

ha� � av

q
1 2 �haz 2 v�2�k

2
eff (see Fig. 2). The pres-

ence in Eq. (9) of two haz�mz� branches opens the possibil-
ity of foldover. However, foldover is actually realized only
if ha� exceeds the threshold given by the ordinate of the
vertex of the dynamic astroid of Fig. 2. At that vertex, the
two y�mz� roots of the equation detA � 0 coincide. Ac-
cording to Eq. (7), this means that �1 2 m2

z � � 2jVjmz ,
i.e., mz � 2jVj 1 �1 1 V2�1�2, and y � �1 2 m2

z ��2.
By inserting these expressions into Eq. (6), one finds for
the threshold the exact result [18]

h2
a� �

4�av�3

jkeffj

p
1 1 V2

�
p

1 1 V2 1 jVj�2
. (10)
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