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Suppression of Superconductivity in Mesoscopic Superconductors
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We propose a new boundary-driven phase transition associated with vortex nucleation in mesoscopic
superconductors (of size of the order of, or larger than, the penetration depth). We derive the rescaling
equations and we show that boundary effects associated with vortex nucleation lower the conventional
transition temperature in mesoscopic superconductors by an amount which is a function of the size
of the superconductor. This result explains recent experiments in small superconductors where it was
found that the transition temperature depends on the size of the system and is lower than the critical
Berezinskĭ-Kosterlitz-Thouless temperature.
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Phase transitions in two dimensions (2D) have been the
subject of long-standing interest. The main reason is that
the Berezinskĭ-Kosterlitz-Thouless (BKT) transition [1–3]
must arise in 2D systems like, for example, superfluids and
quasi-2D superconductors. Berezinskĭ [1] was the first to
show that topological defects such as vortices may play
a significant role in phase transitions. The fact that the
energy required to create a vortex depends on the size of
the system was the main obstacle to this fundamental dis-
covery. Berezinskĭ, however, recognized that the creation
of a vortex-antivortex (V-A) pair is energetically more fa-
vorable, because the pair energy depends on the separation
distance of the pair only. The mechanism of the BKT tran-
sition is the creation of V-A pairs decreases the superfluid
density, which in turn decreases the binding energy of the
V-A pair. As a result, it becomes easier for more pairs
to be created and again this reduces the superfluid density
further. This renormalization process continues until the
screening effect is large enough for vortices and antivor-
tices to nucleate freely and spontaneously. Since single
vortices destroy the phase correlation needed for 2D super-
fluidity, the superfluidity is destroyed and there is a jump
discontinuity in the superfluid density at the transition.

In three dimensions (3D), the creation of a V-A pair re-
quires an enormous amount of energy depending on the
size of the system and it was believed that a generaliza-
tion of the BKT transition to 3D systems was not possible.
However, Williams [4] and Shenoy [5] independently rec-
ognized that pairs of vortex loops may play the same role
as V-A pairs in 3D. With these ideas, Williams [4] con-
structed a model of the superfluid transition in 4He. An
analogous theory was developed by Shenoy [5] to de-
scribe the phase transition of the 3D XY model. More
recently, Kusmartsev [6] proposed a mechanism for vortex
nucleation in a flow of rotating superfluid 4He, based on a
mechanism similar to the BKT transition, where, however,
half-vortex rings (HVR’s) play a role similar to V-A pairs.
The HVR’s penetrate the barrier with the help of critical
fluctuations via the creation of an HVR “plasma.” This
leads to a topological phase transition where the barrier
for vortex nucleation disappears and spontaneous thresh-
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old vortex generation starts. Kusmartsev derived the scal-
ing laws in the critical region and introduced and estimated
the scaling relation and scaling exponent for the critical
velocity.

The properties of a superconductor are expected to
change radically when its size becomes comparable to
that of the Cooper pairs since the creation energy of
a vortex is then of the same order as that of a V-A
pair. Recent progress in microfabrication techniques has
made it possible to study experimentally (mesoscopic
and nanoscopic) superconducting samples of micrometer
and nanometer dimensions [7–9]. This has led to the
discovery of new phenomena in the superconductivity
of mesoscopic systems, particularly the discovery of the
paramagnetic Meissner effect [9–12]. Moreover, while
the value of the Ginzburg-Landau parameter l�j (ratio
of the coherence length j to the penetration length l) is
sufficient to determine the type of bulk superconductors,
both experiments [8,9] and theoretical work [13–17] on
the magnetization of mesoscopic disks have shown that
both the type and order of the transitions between the
superconducting and the normal states depend on the size
of the disk.

In this Letter we propose a boundary-driven phase tran-
sition associated with vortex nucleation in mesoscopic su-
perconductors not previously reported in the literature. The
nucleation of free vortices from the boundary drives the
system to a topological phase transition with a lower criti-
cal temperature than the conventional or BKT critical tem-
perature of the system. Nucleation of single vortices is
prevented by their attraction to the boundary —vortices
induced in the system, just like 2D electric charges, are
attracted to their mirror antivortices (vortices of opposite
polarity). A single “free” vortex can penetrate into the
system only by overcoming the vortex-image antivortex
(V-IA) interaction or, in other words, a surface or Bean-
Livingston barrier. However, creation of other V-IA pairs
close to the boundary may renormalize the “Coulomb”
attraction to the boundary: the V-IA plasma screens the
attraction of the vortex to the boundary just as in the
BKT transition where the creation of V-A pairs screens an
© 2001 The American Physical Society
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effective interaction between a vortex and an antivortex.
Eventually this leads to the creation of free vortices. These
penetrate into the system and the order parameter associ-
ated with superconductivity is destroyed.

To illustrate this effect, let us consider a circular flat
superconducting disk of radius R � O�l� and thickness
d ø R and a vortex of vorticity k � h�m� (m� is the
mass of the Cooper pairs) at a distance r , R from the
center of the disk. Then it is straightforward to show that
the image vortex (of vorticity 2k) is a distance r 0 � R2�r
from the center of the disk on a straight line joining the
center to the vortex at r (see, for example, Ref. [18]). The
interaction energy U0 of the V-IA pair depends logarith-
mically on the separation r 0 2 r ,

U0 � 2q2 ln
R2 2 r2

rrc
1 Ec ,

where Ec is the potential energy associated with the core of
the vortex and rc is the effective core radius. By analogy
with the 2D Coulomb gas,

q �

µ
rs

4p

∂1�2

k � �prs�1�2

µ
h̄

m�

∂
is the effective vortex charge. rs � r2D

s � r3D
s d is the

2D superfluid density. U0�r� is the energy with which the
vortex charge at r is attracted to the boundary (surface) of
the superconducting material.

At low temperatures, near T � 0 K, it is unlikely that
more than only a few vortices will be present. However,
at higher temperatures, there are likely to be many more
vortex excitations, including some located in the space
between r and R. These have an attenuating effect on,
and screen, the interaction U0�r�. Following Kosterlitz
and Thouless [2,3] and Williams [4] and Shenoy [5], we
take into account this screening effect by introducing a
scale-dependent dielectric constant

´�r� � 1 1 4px�r� . (1)

The effective susceptibility x�r� �
RR

rc
a�r 0� dn �r 0�,

where a�r� � q2�R 2 r�2�2kBT is the polarizability and
n�r� is the number density of vortices. It is straightforward
to show that dn�r� � 2prdr exp�2U�r��kBT��r4

c . U�r�
is the screened interaction,

U�r� � 2q2
Z �R22r2��r

rc

dr 0

´�r 0�r 0
1 Ec .

Introducing the dimensionless superfluid density K �
q2��pkBT � and the renormalized density Kr � K�´�r�,
Eq. (1) takes the form

K21
r � K21 1

4p3y0

r4
c

Z R

rc

dr�R 2 r�2r

3 exp

"
22pK

Z �R22r2��r

rc

dr 0

´�r 0�r 0

#
,

where y0 � exp�2Ec�kBT �. This derivation implicitly as-
sumes a rather low density of vortices. This is evident, for
example, in the fact that we have used the unrenormalized
charge q instead of qr � q�´�r� to determine the polar-
izability. Next we also neglect the correction term in the
V-IA interaction energy. Although the principal result is
not changed, these approximations are necessary to pre-
vent the equations from being intractable and lead to

K21
r � K21 1

4p3y0

r4
c

Z R

rc

dr�R 2 r�2r

3 exp

∑
22pK ln

R2 2 r2

rrc

∏
, (2)

To make Eq. (2) self-consistent, one needs to replace K in
the exponential by the renormalized density Kr . However,
at low temperatures, the integral is small, and Eq. (2) is
the first two terms in the expansion of K21

r .
At temperatures near the phase transition where the su-

perfluid density tends to zero, the perturbation series is
not valid. In this regime, we use the vortex-core rescal-
ing technique proposed by José et al. [19] (see also the
review by Wallace [20]). The procedure is to split the
range of integration �rc, R� into two parts, �rc, brc� and
�brc, R�, with b 2 1 � lnb ø 1, and evaluate only the
nonsingular contribution of small r . Rescaling r ! rb in
the second integral to restore the original cutoff rc, we find
a perturbative expansion for K21

r :
1
b

K21
r �

1
b

∑
K21 1

4p3

r4
c

r2
c �R 2 rc�2y0 exp

µ
22pK ln

R2 2 r2
c

r2
c

∂
lnb

∏

1
4p3y0

r4
c

Z R�b

rc

dr

µ
R
b

2 r

∂2

rb3 exp�22pK lnb� exp

∑
22pK ln

R2�b2 2 r2

rrc

∏
. (3)
We now require that Eq. (3) has the same functional form
as Eq. (2). This is achieved by introducing new variables
at the increased scale,

K 021 �
1
b

∑
K21 1 4p3 �R 2 rc�2

r2
c

y lnb

∏
, (4a)

y0 � b3y exp�22pK lnb� , (4b)
together with R0 � b21R and Kr � bKr , where we
have introduced the fugacity y � y0 exp�22pK ln��R2 2

r2��rrc�	. In deriving the above transformation, we have
retained only terms of O� y�. It is convenient to build
up a large increase in the core radius rc by successive
repetition of this transformation. In this way, one arrives
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at differential renormalization group equations for the
effective couplings Kl and yl:

dKl

dl
� Kl 2 4p3 �Rl 2 rc�2

r2
c

K2
l yl , (5a)

dyl

dl
� �3 2 2pKl�yl , (5b)

with the definition dl � lnb. The scaled radius Rl of the
disk satisfies dRl�dl � 2Rl .

The fixed point of the rescaling equations is defined by

�3 2 2pKl�yl � 0 and

Kl 2 4p3 �R 2 rc�2

r2
c

K2
l yl � 0 ,

which have the nontrivial solution

K� �
3

2p
and y� �

r2
c

6p2�R 2 rc�2 . (6)

The critical point (K�, y�) separates the two phases of the
system: the first is the low temperature phase, character-
ized by growing superfluid (renormalized) density Kl 

K0el (with K0 being the initial value of Kl at scale size rc)
and vanishing fugacity yl 
 e2l�j0 , j0 � �pK0�21. The
second one is the high temperature phase, characterized by
exponentially growing fugacity: for infinite temperatures,
Kl � 0 gives yl � y0e3l , i.e., vortices proliferate.

The phase transition between these two regimes is easy
to understand: At low temperatures, T � 01 K, there are
only a few vortices in the system (small fugacity). These
718
are attracted to the boundary and cannot nucleate. The co-
herence length j � O�rc�. As the temperature increases,
there is a growing number of vortex excitations and these
screen the attraction to the boundary. The superfluid
density decreases, the scaled radius Rl decreases, and the
coherence length increases (as �el). As the tempera-
ture increases further, there comes a point at which the
screening is large enough for vortices to nucleate freely.
Rl � j, the scaling stops, and a phase transition occurs.

To find the behavior of the scaling near the critical point,
we rewrite the rescaling equations (5) in terms of scaled
deviations from the fixed point: we expand Kl and yl

around K� and y� as Kl � K��1 1 k0� and yl � y��1 1

y0�. The scaling equations (5) then become, to first order
in k0 and y0,

d
dl

µ
k
y

∂
�

µ
21
23

21
0

∂ µ
k
y

∂
, (7)

where we have dropped the primes. Expanding k, y, and R
in eigenstates A6�l� � A6el6l of the fixed-point stabil-
ity matrix above, the eigenvalues are l1 � �

p
13 2 1��2

and l2 � 2�
p

13 1 1��2. These define the relevant and
irrelevant axes in the Kl-yl plane. We assume, following
the existing procedure, that the relevant scaling field A1 is
the temperature axis, A1 
 Ajej, where e � �1 2 T�Tc�
is the deviation of the temperature T from the transi-
tion (superconducting critical temperature) Tc, and A is a
constant.

Then the rescaling law for the free energy F per unit
area implies
Z�K0, y0, R0� � e2�Fl2F0�L2

Z�Kl , yl , Rl�

� e2�Fl2F0�L2

Z�Ajejel1l , A2el2l, R0e2l� , (8)
where Z is the partition function and R0 is the (unscaled)
radius of the superconducting disk. The scaling stops when
Rl � R0e2l reaches a critical radius Rc � j � rcel . This
happens when

l � lc �
1
2

ln
R0

rc
. (9)

Setting l � lc in Eq. (8), the partition function is well
defined only if

j�� rcelc � � rcjej
21�l1 . (10)

Combining Eqs. (9) and (10) gives jej2 � �rc�R0�l1 ,
whence

T � Tc

∑
1 2

µ
rc

R0

∂l1�2∏
. (11)

This result implies that the superconductivity breaks down
at a temperature which is lower than the conventional su-
perconducting or BKT critical temperature Tc. The mecha-
nism of vortex nucleation into the disk we have described
leads to a depression of Tc by an amount which varies in-
versely with the radius of the superconducting disk
DTc ~ Tc

µ
rc

R0

∂l1�2

. (12)

This depression in the critical superconducting�BKT tem-
perature has been observed in the recent experiments of
Geim et al. [21] on the magnetization of mesoscopic su-
perconducting disks of various radii, typically with d �
0.1 mm and R0 � 1 10 mm. For these (aluminum) disks,
rc (equal to the coherence length j0 at zero temperature)
can be estimated as rc � j0 � 0.18 mm.

The phenomenon described above is very general. Ob-
viously it may arise in any small system, such as superfluid
droplets, quantum dots in a superconducting state, and so
on. It may arise not only in superfluid or superconducting
systems, but also in other condensed states, such as the
magnetic state. In any case, topological defects originat-
ing from the surface/boundary (like vortices in superfluids
and superconductors) have the potential to destroy a con-
densed state provided that the system has a small size and,
in general, the critical temperature must decrease with the
size of the system.
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We have described a mechanism of vortex nucleation in
superconducting systems of size comparable to the charac-
teristic size (coherence length) of the quasiparticles of the
systems, the Cooper pairs. A vortex created in a small
superconductor is strongly attracted to the boundary of
the system and hence cannot nucleate. The attraction is
due to the Coulomb attraction of the “vortex charge” to
the vortex charge of the image antivortex. However, a
fluctuating creation of several of these topological defects
in the bulk of the superconductor, in the space between
the vortex and the boundary, screens the V-IA attraction
by renormalizing the superfluid density. This further im-
proves the condition for the creation of more such fluc-
tuations. The screening effect of the plasma of vortex
fluctuations continues until vortices nucleate freely. This
leads to a phase transition at which the order parame-
ter associated with the superconductivity of the system is
destroyed.

We have used a real-space renormalization group
method to derive the scaling laws in the vicinity of this
phase transition and shown that the phase transition occurs
at a temperature which is lower than the superconducting
or BKT temperature Tc. The amount by which Tc is
lowered is equal to Tc�rc�R0�a (with a . 0), showing
that the depression in the transition temperature increases
with decreasing disk radius R0, in agreement with recent
experiments [21] on mesoscopic superconductors.

The properties of a mesoscopic superconductor are re-
markably different from those of macroscopic or even mi-
croscopic superconductors, being dependent on the size of
the system. In this Letter, we have predicted a new phase
transition that occurs in such confined systems and driven
by the boundary of the systems. More precisely, this phase
transition, although similar to the BKT transition, is driven
by the creation of a plasma between the vortex and the
boundary which screens the Coulomb attraction of the vor-
tex to the boundary. In this respect, the driving mechanism
for the phase transition is analogous to the mechanism pro-
posed by Kusmartsev [6] for the nucleation of vortices in
a flow of rotating superfluid 4He.
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