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We consider a model of an Anderson impurity embedded in a dx22y2 -wave superconducting state to de-
scribe the low-energy excitations of cuprate superconductors doped with a small amount of magnetic im-
purities. Because of the Dirac-like energy dispersion, a sharp localized resonance above the Fermi energy,
showing a marginal Fermi liquid behavior (v lnv as v ! 0), is predicted for the impurity states. The
same logarithmic dependence of self-energy and a linear frequency dependence of the relaxation rate are
also derived for the conduction electrons, characterizing a new universality class for the strong coupling
fixed point. At the resonant energies, the spatial distribution of the electron density of states around the
magnetic impurity is also calculated.
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For a long time nonmagnetic and magnetic impurities
have been exploited to elucidate the microscopic nature of
the superconducting state. In the high-Tc cuprates, substi-
tution by divalent metals (Zn and Ni) for Cu in the CuO2
plane offers a particularly important way of introducing
such impurities, as they preserve the doping level and intro-
duce only minimal structural disorder. Recently, scanning
tunneling microscopy (STM) has been further developed
to probe the quasiparticle scattering states around a single
Zn impurity in Bi2Sr2Ca�Cu12xZnx�O81d with a high spa-
tial and energy resolution by Pan et al. [1]. In the obtained
STM spectra, an intense zero-bias quasiparticle scattering
resonance is found at the Zn sites, and the spatial depen-
dence of the density of states (DOS) in the vicinity of the
impurities reveals a fourfold symmetry which character-
izes dx22y2-wave superconductivity (dSC) [1]. In fact, the
existence of a nonmagnetic impurity induced resonant state
in dSC was predicted theoretically by Balatsky et al. [2–4]
earlier.

Here, we consider the scattering effects of magnetic im-
purities on dSC. In Ni-doped cuprates, in order to maintain
the valence of Cu21 ions �3d9, S � 1�2�, the Ni21 ions
have a configuration �3d8, S � 1�, and strong antiferro-
magnetic exchange couplings with the neighboring Cu
sites lead to a residual S � 1�2 on the Ni site, acting as a
localized magnetic spin weakly coupled to its environment
through exchange interactions [5]. Although there are
some theoretical studies on the quasiparticle states around
such a magnetic impurity in the dSC state [4,6–8], most
of them treated a classical magnetic impurity. It is thus
interesting to study how a quantum magnetic impurity af-
fects the quasiparticle states in optimally doped Bi2Sr2-
Ca�Cu12xNix�O81d superconductors. Since the quantum
fluctuations of the internal degrees of freedom of the mag-
netic impurity play an important role in the ordinary quan-
0031-9007�01�86(4)�704(4)$15.00
tum impurity problems, one can thus expect that the effects
of a quantum magnetic impurity are significantly different
from those of a classical magnetic impurity. Within the
slave boson mean field (MF) theory, we predict a sharp
resonance above the Fermi level and a marginal Fermi
liquid (MFL) behavior for both impurity and surrounding
conduction electrons. Moreover, we explicitly calculate
the spatial distribution of conduction electron DOS to be
compared with STM measurements.

In this Letter, we assume that a BCS-type weak cou-
pling theory is applicable as a phenomenological model for
high-Tc optimally doped superconductors though the un-
derlying mechanisms are different. We also assume the
magnetic impurities are described by the Anderson model
with a strong Hubbard repulsion. When the correlations
between the magnetic impurities on different sites are
ignored, the model Hamiltonian is given by
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where ek � h̄2k2��2m� 2 eF is the dispersion of the con-
duction electrons, Dk � D0 cos2w is the dSC order pa-
rameter, and D0 is the gap amplitude. When Nambu
spinors are introduced
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we can simplify the model Hamiltonian in a matrix form
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where sz and sx are Pauli matrices. Using the method
of equations of motion, the generalized T matrix is
derived T̂ �ivn� � VszĜd�ivn�Vsz , with Ĝ0

k�ivn� �
�ivn 2 eksz 2 Dksx�21 is the unperturbed Green func-
tion (GF) of the conduction electrons. At zero temperature,
analytical continuation is used to calculate the perturbed
GF through the GF of the impurity: Ĝ�r, r0; v� �
Ĝ0�r 2 r0, v� 1 Ĝ0�r, v�T̂ �v�Ĝ0�2r0, v�. The local
DOS of the conduction electrons around the magnetic
impurity is thus given by N�r, v� � 2

1
p ImĜ11�r, r; v�,

and the relaxation rate for the conduction electrons is also
deduced from ImT11�v 1 i01�.

When we take the infinite U limit, the impurity operator
is expressed as ŵ1 � �f1

" b, f#b1� in the slave-boson rep-
resentation [9,10], where the fermion fs and the boson b
describe the singly occupied and hole states, respectively.
The constraint b1b 1

P
s f1

s fs � 1 has to be imposed.
When a MF approximation is applied, the boson operators
b and b1 are replaced by a c number b0, and the constraint
is satisfied by introducing a chemical potential l0. There-
fore, the MF Hamiltonian is written as
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where f̂1 � �f1
" , f#� denotes the Nambu spinors of the

impurity quasiparticles and the renormalized parameters
ẽd � ed 1 l0 and Ṽ � b0V .

Using the standard techniques we find Ĝf�ivn� �
�ivn 2 ẽdsz 2 Ŝf �ivn��21, where the self-energy of
the impurity becomes diagonal,

Sf �ivn� � 2ivn

X
k
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because of the inversion symmetry in the k summation.
At T � 0, the ground-state energy change due to impu-

rity is
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d� ,

where W is the bandwidth and a�v� �
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Solving these equations yields b0 and l0 for given parame-
ters W , D0, G � pNFV 2, and ed , where NF is the DOS
at the Fermi surface. In the following, we will choose D0
as the energy unit, W�D0 � 20, and G�D0 � 0.2.

In the present model the local DOS of quasiparticles
near the Fermi surface goes to zero linearly, so the usual
logarithmic Kondo singularity in the scattering matrix of
the magnetic moment with conduction electrons is thus
absent. When ed is less than a threshold value, b2

0 is
zero, leading to a decoupled free local magnetic moment,
namely, no Kondo effect occurs. However, above the
threshold value of ed , b2

0 rises steeply, and then saturates
quickly. The usual broad mixed valence regime shrinks to
a very narrow regime. In Fig. 1, the ground-state phase
diagram is calculated in the ed-G plane. For a given value
of ed , there will be a phase transition from the decoupled
free spin to the mixed valence, and finally a crossover
to the strong coupling regime. The finite threshold value
of the phase transition is delineated by the solid line be-
tween areas I and II and turns out to be linear in jedj�D0,
approximately.

In the mixed valence and strong coupling regimes, the
impurity DOS versus ed is plotted in Fig. 2. A sharp
local resonance always appears above the Fermi energy
for each value of ed , while the corresponding DOS for
v , 0 is broad and small. This is one of the most impor-
tant differences between the magnetic and nonmagnetic
impurities scatterings, as the localized resonance always
occurs below the Fermi energy for the repulsive potential
scattering in the latter case [2]. To the logarithmic accu-
racy, the zero of the denominator of Ĝf�ivn� is given by
V � V0 2 iV00, and
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FIG. 1. The ground-state phase diagram of the model. The
three areas denoted by I, II, and III correspond to decoupled local
magnetic moment, mixed valence, and strong coupling regimes,
respectively.
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FIG. 2. The DOS Nimp�v� of the magnetic impurity, (a) for
v , 0 and (b) for v . 0, with ed�D0 � 20.2, 0.0, 0.2, and
0.4, denoted by solid, dashed, dotted, and dash-dotted lines,
respectively.

where V0 represents the position of the quasiparticle
resonance, while V00 corresponds to its width or the
inverse lifetime. If the self-energy Sf�v� is expanded
near the resonant energy, the impurity DOS can be
approximately written in a Lorentzian form Nimp�v� �
1
p �b2

0V00���v 2 V0�2 1 �V00�2��. At the resonant energy
v � V0 the height of the resonance is D0

pG

1
V0 , inversely

proportional to the resonant energy. As ẽd ! 0, this
resonance becomes arbitrarily sharp and close to the
Fermi surface, but the DOS at the Fermi energy is always
suppressed to zero for all values of ed because of the
imaginary part of the impurity self-energy.

Actually, an analytic expression for the retarded self-
energy of the magnetic impurity can be derived
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for e 	 jvj�D0 , 1. Here, K�e� is the complete elliptic
integral of the first kind. As v ! 0, we have
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i.e., precisely the MFL behavior proposed by Varma
et al. to describe the anomalous normal state properties
of optimally doped cuprates [11]. Within the T-matrix
approximation, the self-energy of the conduction electron
has exactly the same type of singular behavior. To our
knowledge, it is the first time to obtain such a result.

Earlier, the Kondo effect in “gapless” fermion systems
with DOS r�e� 
 jrjr , �0 , r # 1� has been studied by a
number of authors [12]. They found a critical value for the
Kondo coupling constant below which the local moment
decouples. This feature has been reconfirmed in our calcu-
lations. However, beyond the critical value they found the
same Fermi liquid strong coupling fixed point as in the
standard Kondo problem. To the contrary, some dramati-
cally different results are obtained in our studies. We find
a MFL behavior in the mixed valence and nearly empty
orbital regimes. Namely, the real part of the self-energy
706
goes like v lnv, while the imaginary part behaves like
jvj as v ! 0. We believe a new universality class for the
strong coupling fixed point has been found. The discrep-
ancy with earlier treatments is due to the fact that different
limits are considered. In their case the occupation of the
impurity is always one and there is a true localized en-
ergy level well below the Fermi energy. We, in contrast,
are considering the opposite limit, when the hybridization
is assumed to be large and the impurity energy levels can
merge with the conduction electrons. From the theoreti-
cal point of view, the appearance of MFL behavior in our
model is fully understandable. It is well known that near
the nodes of a dSC, a Dirac-type spectrum appears and the
standard dimensional analysis of the quantum field the-
ory can be applied [13]. The scaling dimensions of the
Nambu spinors Ĉ�r, t� and f̂�t� turn out to be 21 and 0
in length units, respectively. Thus short-range interactions
between the conduction electrons are irrelevant, while the
hybridization term of the Anderson Hamiltonian is mar-
ginal and is responsible for this MFL behavior. It seems
to us that the Dirac structure of the energy dispersion itself
is the main reason behind the MFL for the strong coupling
fixed point.

Focus now on N�r, v� in the spatial range 0 , r # j.
Here j � h̄yF�D0 is the coherence length of the dSC
state, and also the natural length unit of our model, while
in the high-Tc dSC state, j is about 10 Å, or roughly three
lattice spacings. In Fig. 3, the local DOS vs frequency is
shown for r � 0.07j from the magnetic impurity along
the directions of the gap maxima and the gap nodes. In
addition to the usual V-shape structure, there are quasipar-
ticle resonances near the Fermi energy, and the positions
of these resonant peaks coincide with those of the impu-
rity resonances v � 6V0. Along the directions of the
gap maxima, there are two resonances below and above
the Fermi energy, which are slightly asymmetric in the
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FIG. 3. The local DOS N�r, v� of the conduction electrons
for ed�D0 � 20.2, 0.0, and 0.2 (from top to bottom) in units
of NF . Here r � 0.07j corresponds to the largest amplitude of
the quasiparticle resonance at the neighborhood of the impurity.
(a) Along the directions of the gap maxima and (b) along the
directions of the gap nodes.
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FIG. 4. The spatial distributions of the conduction electron
DOS around the impurity at the resonant energies, (a) v � V0

and (b) v � 2V0. Here ed�D0 � 20.2 and a logarithmic in-
tensity scale is used. The coherent length z is about 10 Å, or
roughly three lattice spacings in high-Tc cuprates.

line shape. On the other hand, along the directions of
the gap nodes, there is only one sharp resonance and the
local DOS is entirely holelike. As the impurity energy level
ed increases, the quasiparticle resonances become broader,
exhibiting a similar dependence as the local resonance of
the impurity [6].

We also calculate the spatial variation of the DOS of
the conduction electrons. The DOS around the magnetic
impurity at the resonance energies is displayed in Fig. 4a
for 1V0 and in Fig. 4b for 2V0 as a function of spa-
tial variables for ed�D0 � 20.2 in a logarithmic intensity
scale. The quasiparticle resonances induced by the mag-
netic impurity are highly localized around the impurity,
and the spatial oscillation of these resonant states is visible.
The largest amplitude of the quasiparticle resonance oc-
curs at the neighborhood of the impurity, and the local
electronic structures distinctly differ in Figs. 4a and 4b.
For v � 1V0, the local DOS exhibits a fourfold symme-
try along the directions of the gap nodes for all distances,
consistent with the dSC of the conduction electrons. For
v � 2V0, the local DOS is strongly enhanced in the gap
maxima directions at distances r ø j. Farther away from
the impurity (r 
 j), it is confined to the neighborhood of
the diagonal directions, leading to an eightfold symmetry.
The logarithmic correction to the real part of the self-
energy is a very subtle effect to detect experimentally.
However, its imaginary part, the inverse quasiparticle life-
time t21 ~ 2�Ṽ�ẽd�2 ImSf�v� ~ jvj can be checked by
experiments directly. Amazingly, such a linear frequency
dependence of the inverse quasiparticle lifetime has been
observed in the recent angle-resolved photoemission ex-
periments in optimally doped Bi2Sr2CaCu2O81d along the
nodal directions [14,15]. Although these high-Tc cuprates
are believed to contain a small number of intrinsic defects
or implications and “impurity scatterings” may lead to lo-
calization of quasiparticle states, it is not clear whether the
Anderson impurity model embedded in the dSC state is
applicable in this case.

To conclude, we have investigated the quantum mag-
netic impurity effects in high-Tc superconductors based
on the Anderson model. We have found a new universal-
ity class for the strong coupling fixed point for this type
of model. We have made explicit predictions on the reso-
nance states around the magnetic impurities to be com-
pared with experiments.
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Note added.—After submitting the manuscript, we
received a preprint [16] on optimally doped Bi2Sr2Ca-
�Cu12xNix�O81d in which a localized resonance above
the Fermi energy has been reported in the DOS of the Ni
impurity, and the spatial dependence of the conduction
electron DOS at the resonant energies is in a reasonable
agreement with our calculations.
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