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Structural Deformation and Intertube Conductance of Crossed Carbon Nanotube Junctions
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We present a first-principles study of the structure and quantum electronic conductance of junctions
consisting of two crossed �5, 5� single-walled carbon nanotubes. The structures are determined by con-
strained minimization of total energy at a given force between the two tubes, simulating the effects of
substrate-tube attraction or an applied force. We find that the intertube contact distance is very sensi-
tive to the applied force in the range of 0–10 nN. The intertube conductance is sizable for realistic
deformation expected from substrate interaction. The results explain the recent transport data on crossed
nanotubes and show that these systems may be potentially useful as electromechanical devices.
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Carbon nanotubes have drawn intense research efforts
due to their unique structural and electronic properties
since their discovery about a decade ago [1]. For example,
nanotubes have high material strength and extraordinary
flexibility [2], and they are metallic or semiconducting
depending sensitively on their radii and chiralities [3–5].
Because of their unusual strength and electrical properties,
carbon nanotubes have been proposed as molecular elec-
tronic devices such as field-effect transistors [6,7], single-
electron-tunneling transistors [8,9], and rectifiers [10–13].
In addition, they may be used as molecular wires which
interconnect molecular-scale objects. For example, a topo-
logical defect consisting of a 5-atom ring and 7-atom
ring pair can join two different half-tubes to form metal-
semiconductor, semiconductor-semiconductor, or metal-
metal junctions [10,14]. The electronic properties of such
on-tube junctions have already been studied theoretically
[10,15,16], and the existence of these junctions has been
experimentally verified [11,12].

Recently, crossed carbon nanotube junctions have been
made and shown to exhibit properties potentially appli-
cable for molecular electronic devices [13]. This type
of junction is formed by single-walled carbon nanotubes
(SWNTs) crossing each other on a substrate, and easier to
fabricate than the on-tube [10,14–16], T [17], or Y junc-
tions [18]. In crossed-tube junctions, one can control inter-
tube distances by applying a pressure using, for example,
an atomic force microscope (AFM) tip. The intertube
conductance is expected to change with varying intertube
distance, which may be useful for application in electro-
mechanical devices. A junction under pressure would re-
sult in a change in the overlap of wave functions and
structural deformation. A large overlap of wave functions
will favor intertube tunneling, but a large structural defor-
mation may reflect back the incident current because such
deformation would act as a strong scatterer.

To address these issues, a first-principles study of both
the structure and the conductance of the system is neces-
sary. The structure needs to be accurate, since the inter-
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atomic distance between carbon atoms across the different
tubes will play a key role in determining the intertube
conductance. First-principles calculations are desirable
because accurate wave functions and Hamiltonian matrix
elements are required to describe quantitatively the small
intertube and large intratube conductances simultaneously.

We calculate the crossed-tube junction conductance em-
ploying an ab initio pseudopotential density functional
approach with a linear combination of atomic orbitals
(LCAO) basis [19]. We use norm-conserving pseudo-
potentials [20] in the Kleinman-Bylander form [21]. An
exchange correlation functional in the generalized gradient
approximation (GGA) is used [22]. We expand the wave
functions in a double zeta basis set with an energy cutoff
(for real space mesh points) of 70 Ry for structural relax-
ations and in a single zeta basis set with an energy cutoff
of 80 Ry for conductance calculations. Test calculations
show that the basis set is able to reproduce accurately the
bond length of graphene as well as the interlayer distance
between the graphite planes. The calculated binding en-
ergy of graphite within the GGA is 6.9 eV per carbon atom
as compared to the experimental value of 7.4 eV per atom.

We consider a resistive junction region and four perfect
regions (metallic leads) composed of semi-infinite perfect
carbon nanotubes. The LCAO Hamiltonian matrix ele-
ments for each region are obtained from ab initio calcula-
tions, and matched at the boundaries. Incident electrons
are described by Bloch eigenstates of a perfect carbon
nanotube. After the Hamiltonian matrix elements be-
tween basis orbitals at the resistive junction regions and
semi-infinite perfect regions are determined, we set up
the inhomogeneous linear equations for scattering states.
Scattering-state solutions at a given energy are used to
determine the desired transmission coefficients used in
the conductance calculation within the Landauer-Büttiker
formalism [23,24]. The junction is modeled to consist of
two �5, 5� SWNTs crossing at a 90± angle.

In the experimental devices [13], we expect that the
strong adhesion of the SWNTs to the SiO2 substrate
© 2001 The American Physical Society
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generates a significant contact force between the two
crossed SWNTs. For a crossed junction composed of
SWNTs of the experimental diameter of 1.4 nm, this con-
tact force has been estimated to be about 5 nN [25]. To
mimic a similar deformation for our �5, 5� crossed-tube
junction, one would need a contact force about 15 nN [26].
We have performed a complete study of the conductance as
a function of the contact force. In our calculation, the junc-
tion geometry is determined by performing a constrained
total energy minimization in a supercell, in which we fully
relax the position of the atoms near the junction while
fixing the center-to-center intertube distance at the bound-
aries to produce the desired contact force. To establish a
reference, we first calculate the conductance of a crossed-
nanotube junction in free space, where the walls of the
SWNTs at the closest point of contact are at the van der
Waals distance �3.34 Å� away from each other. To obtain
the geometry for the finite force case, we reduce the
center-to-center intertube distance until the relaxed struc-
ture has a given contact force between the two SWNTs.
For example, at a contact force of 15 nN, the closest
atomic separation between the two �5, 5� SWNTs is re-
duced by 20% from the van der Waals distance.

Figure 1 shows the relaxed structure of a �5, 5� crossed-
tube junction with a center-to-center intertube distance
of 7.4 Å which produces a contact force of 15 nN. In
the calculation for the junction geometry, we include
320 atoms in the supercell, corresponding to two seg-
ments of the SWNT, each containing 160 atoms, and relax
the 240 atoms closest to the junction area. In Fig. 2, the
calculated contact force and contact distance are plotted
as functions of the center-to-center intertube distance.
The contact distance is defined to be the shortest distance
between atoms at different tubes.

As in graphite, the tubes repel each other at the junc-
tion area when the contact distance is below 3.34 Å. In
the experiment [13], this repulsive force is balanced by the
attractive force between the tube and the substrate. For the
�5, 5� crossed-tube junction, our results show that the con-
tact distance saturates at near 2.5 Å for contact force ex-
FIG. 1. Structural relaxation of a �5, 5� crossed carbon nano-
tube junction with a 15 nN contact force.

ceeding 10 nN. (See Fig. 2.) This arises because, below a
critical contact distance, the repulsive part of the interlayer
potential behaves “hard-wall”-like, as in any closed-shell
system. The junction responds to any further increase
in applied force by flattening the tube over a large area
of deformation rather than reducing the contact distance.
Hence, although the contact distance is a steep function of
the contact force (or center-to-center intertube distance) in
the range of 1–10 nN, it becomes rather insensitive to the
force afterwards.

Once the structure is known, the calculated self-
consistent Hamiltonian matrix elements may be used to
calculate the linear-response conductance of the crossed-
tube junction by using the Landauer-Büttiker formula
[23,24]. The intertube and the intratube conductance
is calculated as a function of the energy of an incident
electron for a 4-terminal device in a 4-terminal 4-probe
measurement setup. If we denote the lead pairs of single
tubes by �1, 2� and �3, 4�, respectively (see Fig. 3), then the
4-terminal 4-probe intertube conductance can be written
in the following manner:
G13,24�4-terminal 4-probe, intertube� �
I1

V2 2 V4
�

a11��Tij��a22��Tij�� 2 a12��Tij��a21��Tij��
a21��Tij��

, (1)
where alm��Tij��’s are defined in Ref. [24]. Intertube con-
ductance refers to the 4-terminal 4-probe intertube conduc-
tance throughout this paper unless otherwise stated. When
there is no magnetic field, aij � aji , and Gij � Gji , with

Gij �
2e2

h Trt
y
ijtij �

2e2

h NjTij . Here Gij , tij , and Tij de-
note the 2-terminal conductance, transmission coefficient,
and average transmission probability from terminal j to ter-
minal i in a multichannel configuration, respectively, and
Nj is the number of channels in terminal j not including
spin degeneracy. Since the 2-terminal intratube conduc-
tance is expected to be much greater than the 2-terminal
intertube conductance Gij , the 4-terminal 4-probe intertube
conductance can be approximated to first order by the sum
of four 2-terminal intertube conductances determined by
transmission coefficients. That is, when the 2-terminal in-
tertube conductances (G13, G14, G23, and G24) in Fig. 4 are
small compared to the 2-terminal intratube conductances
�G12, G34�, the following relation holds to first order for
the 4-terminal 4-probe intertube conductance:

G13,24�4-terminal 4-probe, intertube� � G13 1 G14

1 G23 1 G24 .
(2)

Figure 3 gives the calculated 4-terminal 4-probe inter-
tube conductance for the �5, 5� crossed-tube junction. The
689
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FIG. 2. Calculated contact distance and contact force as
functions of the center-to-center intertube distance for a �5, 5�
crossed-tube junction.

4-terminal 4-probe conductances calculated in different
configurations (i.e., between 1 and 3 or 1 and 4) are essen-
tially the same [27]. In Fig. 3, the average of the absolute
values of the 4-terminal 4-probe conductances [Eq. (1)] of
different configurations and the results from the approxi-
mation above [Eq. (2)] are compared. The agreement be-

FIG. 3. Calculated intertube conductance of a �5, 5� crossed-
tube junction with a center-to-center intertube distance of 7.4 Å
as a function of the energy of the incident electron. The thin
solid line indicates the intratube conductance of a single perfect
tube. The thick solid line is the 4-terminal 4-probe intertube
conductance from the Landauer-Büttiker formula. The dashed
line is calculated from the sum of four intertube transmission
coefficients (see text). The inset shows an expanded view of
conduction near the Fermi level and terminal indices.
690
tween the two curves in Fig. 3 near the Fermi level shows
that the 4-terminal 4-probe intertube conductance near the
Fermi level can be sizable even though the 2-terminal in-
tertube conductances are small.

So far, we have presented the results with relaxed ge-
ometries starting from a specific initial configuration in
which one carbon atom of one tube is located directly on
top of an atom of the other tube, defining the contact point
and the contact distance. We have also calculated relaxed
geometries and conductance starting from a different ini-
tial orientation in which the center of a hexagon of one
tube is directly over the center of a hexagon of the other
tube. No significant difference has been found between the
two sets of calculations.

For contact forces considered in Fig. 4, our calculated
intertube conductance is of the same order as those mea-
sured for the experimental metallic junctions [13]. For the
zero-force junction, we find an intertube conductance of
approximately 2 orders of magnitude lower than the ob-
served conductance, showing the importance of the junc-
tion deformation. The intertube conductance also has a
nontrivial dependence on the contact force or distance. For
example, as shown in Fig. 4, a smaller contact distance re-
sults in a larger intertube conductance, as expected from
a larger overlap of wave functions; however, the depen-
dence is not exponential. The junction conductance is a
consequence of an interplay between intratube and inter-
tube transmissions, both of which depend on the entire

FIG. 4. Calculated intertube and intratube conductances as a
function of contact force or contact distance for a �5, 5� crossed
nanotube junction. Solid (dashed) lines and left (right) y-axis
indicate intertube (intratube) conductances.
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deformation region at the junction. One interesting po-
tential application of these systems is that one can tune the
intertube conductance mechanically by applying a force on
the junction area. This may be realized, for example, with
AFM tips. The junctions may then be used as nanoscale
electromechanical devices.

Another interesting result from the calculations is that,
for the relaxed structures considered, the intertube cur-
rents are found to be larger than the backscattered currents
for states near the Fermi level. The implication is that,
at a moderate contact force, electrons can easily tunnel
from one SWNT to the other, whereas backscattering by
the junction is more or less suppressed. The suppressed
backscattering is consistent with the findings in Ref. [28].

In summary, we have presented a first-principles study
of the intertube conductance of crossed carbon nanotube
junctions. The electronic and geometric structures for a
fixed contact force (or center-to-center intertube distance)
are determined self-consistently by using a constrained to-
tal energy minimization approach. The intertube conduc-
tance is found to depend globally on the overall structural
deformation of the junction. For moderate contact forces,
a smaller contact distance corresponds to a greater inter-
tube conductance. Thus, the role of the tube-substrate
interaction is important in understanding the recent ex-
perimental results on the crossed-tube junctions. The sen-
sitivity of the junction conductance to the contact force
makes these crossed-tube structures potentially useful for
nanoscale electromechanical devices.

This work was supported by the NSF under Grant
No. DMR-9520554, and by the Office of Energy Re-
search, Office of Basic Energy Sciences, Materials
Sciences Division of the U.S. Department of Energy
under Contract No. DE-AC03-76SF00098. M. S. C. M.
acknowledges support from CNPq-Brazil. H. J. C. and
J. I. were supported by the Ministry of Information and
Communications of Korea and the BK21 Project of the
KRF. Computer time was provided by the NSF at the
National Center for Supercomputing Applications and by
the DOE at the Lawrence Berkeley National Laboratory’s
NERSC center.

[1] C. Dekker, Phys. Today 52, No. 5, 22 (1999).
[2] J.-P. Salvetat, J.-M. Bonard, N. H. Thomson, A. J. Kulik,

L. Forró, W. Benoit, and L. Zuppiroli, Appl. Phys. A 69,
255 (1999).

[3] J. W. Mintmire, B. I. Dunlap, and C. T. White, Phys. Rev.
Lett. 68, 631 (1992).

[4] N. Hamada, S.-I. Sawada, and A. Oshiyama, Phys. Rev.
Lett. 68, 1579 (1992).
[5] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus,
Appl. Phys. Lett. 60, 2204 (1992).

[6] S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature
(London) 393, 49 (1998).

[7] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph.
Avouris, Appl. Phys. Lett. 73, 2447 (1998).

[8] M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra,
A. Zettl, A. Thess, and R. E. Smalley, Science 275, 1922
(1997).

[9] S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley,
L. J. Geerligs, and C. Dekker, Nature (London) 386, 474
(1997).

[10] L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and
M. L. Cohen, Phys. Rev. Lett. 76, 971 (1996).

[11] P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E.
Smalley, Science 278, 100 (1997).

[12] Z. Yao, H. W. C. Postma, L. Balents, and C. Dekker, Nature
(London) 402, 273 (1999).

[13] M. Fuhrer, J. Nygard, L. Shih, M. Foreo, Y.-G. Yoon,
M. S. C. Mazzoni, H. J. Choi, J. Ihm, S. G. Louie, A. Zettl,
and P. L. McEuen, Science 288, 494 (2000).

[14] B. I. Dunlap, Phys. Rev. B 49, 5643 (1994).
[15] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys.

Rev. B 53, 2044 (1996).
[16] Ph. Lambin, A. Fonseca, J. P. Vigneron, J. B. Nagy, and

A. A. Lucas, Chem. Phys. Lett. 245, 85 (1995).
[17] M. Menon and D. Srivastava, Phys. Rev. Lett. 79, 4453

(1997).
[18] G. Treboux, P. Lapstun, and K. Silverbrook, Chem. Rev.

Lett. 306, 402 (1999).
[19] D. Sánchez-Portal, P. Ordejón, E. Artacho, and J. M.

Soler, Int. J. Quantum Chem. 65, 453 (1997); E. Artacho,
D. Sánchez-Portal, P. Ordejón, A. García, and J. M. Soler,
Phys. Status Solidi B 217, 335 (2000).

[20] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993
(1991).

[21] L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425
(1982).

[22] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.
77, 3865 (1996).

[23] R. Landauer, IBM J. Res. Dev. 1, 223 (1957).
[24] M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).
[25] T. Hertel, R. E. Walkup, and Ph. Avouris, Phys. Rev. B 58,

13 870 (1998).
[26] An elastic model with constant curvature modulus gives

strain energy inversely proportional to the radius. Thus,
to distort a tube of half the radius would require 4 times
the force for the original size tube. [G. B. Adams, O. F.
Shankey, J. B. Page, M. O’Keefe, and D. A. Drabold, Sci-
ence 256, 1792 (1992)].

[27] Calculated 4-terminal 2-probe intertube conductance is also
very similar to 4-terminal 4-probe intertube conductance
within 10%.

[28] P. L. McEuen, M. Bockrath, D. H. Cobden, Y.-G. Yoon, and
S. G. Louie, Phys. Rev. Lett. 83, 5098 (1999).
691


