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Optical Conductivity of One-Dimensional Mott Insulators
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We calculate the optical conductivity of one-dimensional Mott insulators at low energies using a field
theory description. The square root singularity at the optical gap, characteristic of band insulators, is
generally absent and appears only at the Luther-Emery point. We also show that only few particle
processes contribute significantly to the optical conductivity over a wide range of frequencies and that
the bare perturbative regime is recovered only at very large energies. We discuss possible applications
of our results to quasi-one-dimensional organic conductors.
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Measurements of dynamical properties and, in par-
ticular, the optical conductivity s�v� are supposed to
provide a stringent test of the existing theories of
quasi-one-dimensional (1D) systems. The behavior of
s�v� in the metallic regime is easily understood in terms
of the Tomonaga-Luttinger theory [1]. The situation in
the Mott insulating phase [2] is much more complicated
as a spectral gap in dynamically generated by interactions.
Here s�v� has until now only been studied by perturba-
tive methods [3,4], which are expected to work well at
high and intermediate frequencies but are not applicable
to the most interesting regime of frequencies close to
the optical gap. The purpose of the present work is to
determine s�v� in 1D Mott insulators for all frequencies
much smaller than the bandwidth, which is the large scale
in the field theory approach to the problem. In particular,
we obtain for the first time the true behavior of s�v� just
above the optical gap.

An important property of one-dimensional systems that
significantly simplifies our analysis is spin-charge separa-
tion, which occurs at energies much smaller than the band-
width. In this regime s�v� is determined solely by the
charge degrees of freedom. The standard description of
the charge sector of the 1D Mott insulator is given by the
sine-Gordon model (SGM) [4,5]

HsG �
Z

dx

∑
4p�P�2 1

1
16p

�≠xf�2 1 2m cos�bf�
∏

.

(1)

Here the momentum and coordinate densities obey the
standard commutation relation �P�x�, f� y�� � 2id�x 2

y�. Throughout this Letter we set the charge velocity and
h̄ equal to 1.

The cosine term in the Hamiltonian is related to um-
klapp processes and the value of the sine-Gordon coupling
constant b is determined by the interactions. The umklapp
processes are relevant for b2 , 1 and dynamically gener-
ate a spectral gap M, which is related to m by (12). For
1�2 , b2 , 1 the spectral gap is related to the optical gap
D (i.e., the gap seen in the optical absorption) by D � 2M,
0031-9007�01�86(4)�680(4)$15.00
whereas for b2 , 1�2 solitonic bound states are formed
below 2M.

Our calculations of s�v� are based on the exact solution
of the SGM and, in particular, on the work of Smirnov
[6]. We confine our analysis to the repulsive regime 1�2 ,

b2 , 1, where the excitation spectrum consists of charged
particles and holes (solitons and antisolitons), which do not
form bound states. At the “Luther-Emery” point b2 �
1�2 the SGM is equivalent to the theory of free spinless
massive Dirac fermions. In this limit the solitons become
noninteracting particles and the Mott insulator turns into a
conventional band insulator. In the limit b2 ! 1 the SGM
acquires an SU(2) symmetry and describes the Hubbard
model at half filling in the regime of weak interactions
[7,8] and s�v� was recently determined in [9].

The optical conductivity is related to the imaginary
part of the current-current correlation function, x�v, q� �
� j2qjq�, by

s�v . 0� � Im�x�v, q � 0�	�v . (2)

The current density operator is proportional to the momen-
tum density

jq � A1�2Pq, Pq �
Z

dx P�t, x�eiqx . (3)

The nonuniversal coefficient A1�2 depends on the detailed
structure of the underlying microscopic lattice model.

Using the spectral representation one can express the op-
tical conductivity at T � 0 as a sum over matrix elements
of the zero wave vector Fourier component of the momen-
tum operator:

s�v . 0� �
A
v

X
n

j�0jP0jn�j2d�v 2 �En 2 E0�� .

(4)

Here j0� and jn� represent the ground state and excited
states with energies E0 and En, respectively. The difficul-
ties in computation of the optical response are related to the
fact that one requires not only the knowledge of the spec-
trum En, but also of the matrix elements of the momentum
© 2001 The American Physical Society
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operator. The exact expressions for the matrix elements
�njP0j0� are extracted from the exact solution by means
of the so-called form factor bootstrap procedure [6]. This
approach is particularly efficient for strongly interacting
integrable models with spectral gaps, because for a given
energy v the spectral representation for the imaginary part
contains only a finite number of terms (in the absence of
bound states at most �v�D� terms). In practice the spec-
tral sum is found to converge extremely rapidly, so that
a very good approximate description can be obtained by
taking into account intermediate states with at most four
particles [10]. The multiparticle matrix elements become
essential only at very high energies where the field theory
can no longer be used to describe the underlying lattice
model anyway.

In order to compute (4) we need to introduce a suitable
spectral representation. In the parameter regime we study,
the spectrum contains only solitons and antisolitons with
relativistic dispersion e� p� �

p
p2 1 M2. It is useful to

parametrize the spectrum in terms of a rapidity variable
u such that p � M sinhu, e � M coshu. Solitons and
antisolitons are distinguished by the internal index ´ � 6.
A state of n solitons/antisolitons with rapidities �uk	 and
internal indices �´k	 is denoted by jun · · · u1�´n ···´1 . Its total
energy E, momentum P, and electric charge Q are

P � M
nX

k�1

sinhuk , E � M
nX

k�1

coshuk ,

Q ~

nX
k�1

´k .
(5)

In terms of this basis s�v� is expressed as

s�v� �
2p2A

v

X̀
n�0

X
´i

3
Z du1 · · · dun

�2p�nn!

Ç
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Ç2

3 d

µ
M

X
k

sinhuk

∂
d

µ
v 2 M

X
k

coshuk

∂
� s2�v� 1 s4�v� 1 · · · . (6)

Here

fj�u1 · · · un�´1···´n 
 �0j j�0, 0� jun · · · u1�´n ···´1 (7)

are the form factors of the current operator, s2�v� and
s4�v� represent the contributions from two- and four-
particle processes, and the dots indicate processes involv-
ing a higher number of (anti)solitions. We note that as
a consequence of symmetry properties only intermediate
states with an even number of particles contribute to this
correlation function. From (6) it is easy to see that only
two-particle processes contribute up to energies v � 4M,
only two- and four-particle processes up to v � 6M, and
so on.

The form factors (7) have been determined in [6] and can
be used to calculate the first few terms in the expansion (6).
Here we give explicitly only the two-particle contribution
and refer to [11] for details on the much more complicated
four-particle contribution. We find

s2�v� �
2AQ�v 2 2M�
v2

p
v2 2 4M2

j f�u�j2, (8)

where Q�x� is the Heaviside function,

f�u� � fj�u�12 � fj�u�21 �
2pM
ib

sinhu�2

cosh� u1ip
2j �

3 exp

ΩZ `

0
dt

sinh2 t�1 2 iu�p� sinht�j 2 1�
t sinh2t cosht sinhtj

æ
,

(9)

and

u � 2arccosh�ṽ�, j � b2��1 2 b2�,

ṽ � v�2M .
(10)

The two- and (100 times the) four-particle contribu-
tions to s�v� for b2 � 0.9 are presented in Fig. 1. Most
importantly, the square root singularity, being a character-
istic feature of band insulators, is suppressed by the mo-
mentum dependence of the soliton-antisoliton form factor
and reappears only for the Luther-Emery point b2 � 1�2.
This effect was noted previously for the Hubbard model
at half filling [9] which corresponds to the special SU(2)
symmetric point b2 � 1. We find that for any b2 fi 1�2
there is a square root “shoulder” s�v� ~

p
v 2 D for

v�D 2 1 ø 1 as shown in the inset of Fig. 1. In the
vicinity of the Luther-Emery point b2 � 1�2 we obtain
the following analytical expression valid for ṽ 2 1 ø 1:
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FIG. 1. Two-particle (solid line) and 100 times the four-
particle (dashed line) contributions to the optical conductivity
as a function of �v�M� for b2 � 0.9. Inset: threshold behavior
of s�v� close to the Luther-Emery point for four different
values of b; b � 0.72 (solid line), b � 0.73 (dotted line),
b � 0.74 (dashed line), and b � 0.75 (long dashed line).
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s�v� ~

p
ṽ2 2 1

�ṽ2 2 1� 1 j2 sin2 g
,

g � p

µ
1

2b2 2 1

∂
.

(11)

The square root singularity above v � D for b2 � 1�2
is replaced by a maximum occurring at v�D 2 1 ~ g2.

The four-particle contribution to s is seen to be insig-
nificant at low energies and becomes larger than the two-
particle contribution only at v � 180M for b2 � 0.9.
This suggests that the optical conductivity is well described
by the combination of two- and four-particle contributions
up to several hundred times the mass gap. Computation
of higher order terms in Eq. (6) becomes cumbersome and
probably of no physical interest, since the previous analy-
sis suggests that they become important outside the region
of applicability of the field theory approach to physical
systems.

At frequencies much larger than the gap it is possible
to determine s�v� by perturbative methods. The leading
asymptotics can be calculated by “conformal perturbation
theory” [12]. Here the cosine interaction in (1) is con-
sidered as a (relevant) perturbation of the Gaussian model
and correlation functions are calculated in an expansion
in powers of the scale m, which can then be expressed in
terms of the physical gap M as [13]

m �
G�b2�

pG�1 2 b2�

∑
M

p
p G�1�2 1 j�2�

2G�j�2�

∏222b2

. (12)

We find to leading order

s�v� � 2924b2

µ
p2b

G�2b2�

∂2

m2v�4b225�

�
8p3b2

vG2�1 2 b2�G2�1
2 1 b2�

3

∑
G� j

2 �

2
p

p G� 11j

2 �
v

M

∏4b224

. (13)

We emphasize that the ratio of the coefficients of the high-
and low-energy asymptotics (13), (8) is fixed [6,14], In
other words, the amplitude of the power law in (13) is tied
to the overall factor in (8) and the form factor expansion
must approach the perturbative result in the large-v limit.
A comparison between the form factor results and (13) is
shown in Fig. 2. We see that the asymptotic regime is not
yet reached at energies as high as v � 1000M [in practical
terms this implies that perturbation theory (PT) cannot
be used to make contact with experiment]. We note that
the contributions due to intermediate states with 6, 8, . . .
particles are all positive and will make the agreement of
the form factor sum with PT in the region v � 1000M
only worse. A good way to overcome these deficiencies
of bare PT is to carry out a renormalization-group (RG)
improvement as performed in [4]. In Zamolodchikov’s
scheme [13] the RG equations for the sine-Gordon model
are given by
682
10 100 1000
ω/Μ

1e−05

1e−04

1e−03

1e−02

1e−01

1e+00

σ(
ω

)

2−particle contribution
(2+4)−particle contribution
Conformal Perturbation Theory

1e+01 1e+02 1e+03

ω/Μ

1e−04

1e−02

1e+00

σ(
ω

)

RG
FF

FIG. 2. Comparison between the 2- and 2 1 4-particle contri-
butions to the optical conductivity and the perturbative result,
for b2 � 0.9. Inset: comparison between the form factor result
and RG improved PT.
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The solution of (14) is

g� � 4
1 2 b2

b2

p
q

1 2 q
, gk � 2

1 2 b2

b2

1 1 q
1 2 q

,

(15)

where

q

µ
�1 2 q�b2

4�1 2 b2�

∂2b222

� e�424b2� �t2t0�. (16)

Using t 2 t0 � ln��
p

p e3�4M�23�2v�� we can reexpress
(13) up to higher order terms as

s�v� �
p3b6g2

�

2vG2�2 2 b2�G2� 1
2 1 b2�

3

"
G� j

2 �e3�4
p

j

27�2G� 11j

2 �

#4b224

. (17)

The RG improved result (17) for s�v� is compared to
the form factor result (sum of the two- and four-particle
contributions) in the inset of Fig. 2. The agreement is
rather good down to energies of the order of 5M.

One possible realization of a 1D Mott insulator is the
�TMTSF�2X Bechgaard salts [15]. These materials are
highly anisotropic and can be modeled as weakly coupled,
quarter-filled chains. At energies or temperatures above
the 1D–3D crossover scale Ecr the interchain coupling
becomes ineffective and a description in terms of a purely
1D model with charge sector (1) should be possible [5].
At present there is some uncertainty regarding the value of
Ecr because interactions can renormalize its bare value, set
by the interchain coupling, downwards [16]. There is a lot
of ambiguity in fitting our results to the data. The value of
the optical gap 2M is not known and, as discussed above,
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FIG. 3. Comparison between the optical conductivity calcu-
lated in the SGM for b2 � 0.9 (solid lines) and measured op-
tical conductivity for �TMTSF�2PF6 from Ref. [15] (diamonds).
The inset shows the same comparison on a logarithmic scale.

we cannot calculate the overall normalization of s�v�. We
therefore use these as parameters in order to obtain a good
fit at large v (where the theory is expected to work best as
3D effects are unimportant) to the data [15] for any given
value of b. We obtain reasonable agreement between the
form factor result s2�v� 1 s4�v� and the data for b2 �
0.9, which corresponds to a Luttinger liquid parameter
of Kr � b2�4 � 0.225. This value is consistent with
previous estimates (see the discussion in [15]) [17].

As is clear from Fig. 3, the model (1) seems to apply
well at high energies, but becomes inadequate at energies
of the order of about 10 times the Mott gap [�1600�cm
in �TMTSF�2PF6]. Spectral weight is transferred to lower
energies beyond that of a pure 1D Mott insulator emerges.
There are at least two mechanisms that should be taken into
account in this range of energies. First, a small dimeri-
zation occurs in the 1D chains and will almost certainly
affect the structure of s�v� around its maximum. Second,
the interchain hopping is no longer negligible [18] and
ought to be taken into account.

In summary, we have exactly calculated s�v� for a pure
1D Mott insulator in a field theory approach. We have
determined the threshold behavior for the first time and
found it to exhibit a universal square root increase for any
b2 . 1�2. This is in contrast to the well-known square
root singularity that appears at the Luther-Emery point
b2 � 1�2. In the “low”-energy region �v�D , 50� the
optical conductivity is dominated by the two-particle con-
tribution with a small correction from four-particle pro-
cesses. We also have shown that the leading asymptotic
behavior obtained in PT is a good approximation only
at extremely large frequencies, whereas RG-improved PT
works well over a large region of energies.
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