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Stopping Light via Hot Atoms
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We prove that it is possible to freeze a light pulse (i.e., to bring it to a full stop) or even to make
its group velocity negative in a coherently driven Doppler broadened atomic medium via electromag-
netically induced transparency (EIT). This remarkable phenomenon of the ultraslow EIT polariton
is based on the spatial dispersion of the refraction index n�v, k�, i.e., its wave number dependence,
which is due to atomic motion and provides a negative contribution to the group velocity. This is re-
lated to, but qualitatively different from, the recently observed light slowing caused by large temporal
(frequency) dispersion.
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Slow group velocity in coherently driven media [1]
has been shown to provide new regimes of nonlinear
interaction with highly increased efficiency even for
very weak light fields, high precision spectroscopy, and
magnetometry [2]. It has been demonstrated [1,3,4]
that EIT is accompanied by large frequency dispersion,
jv≠n�≠vj ¿ 1, and can slow the group velocity down to
10 102 m�s.

In this paper we show that, using spatial dispersion due
to atomic motion, it is possible to freeze the light, yg � 0,
or even to make its group velocity opposite to the wave
vector, yg , 0 [see Eq. (1)]. We consider two different
types of atomic media: (i) atomic beam or uniformly mov-
ing sample, and (ii) hot gas in a stationary cell.

Freezing of light in a stationary cell via a hot gas is es-
pecially intriguing (Fig. 1). The idea is to tune the driving
field to resonance with the velocity group of atoms that
moves in the direction opposite to the light pulse with ve-
locity equal to the light group velocity that would be sup-
ported by this group of atoms if they were at rest.

The main result of the present paper is contained in
Fig. 2 which shows that yg can be zero, for a pulse in a
hot gas, when the drive detuning Dvd is properly chosen.

As is well known, in a medium possessing both temporal
and spatial dispersion of the refraction index, n�v, k� �
1 1 2px�v, k�, the group velocity of light contains two
contributions,

yg � Re
dv

dk
� Re

c 2 v
≠n�v,k�

≠k

n�v, k� 1 v
≠n�v,k�

≠v

� ỹg 2 ys .

(1)

Equation (1) is an immediate result of differentiat-
ing the dispersion equation kc � vn�v, k�, i.e., c �
yg�n 1 v≠n�≠v� 1 v≠n�≠k. The meaning of Eq. (1)
becomes clear if one turns to the equation for a field
amplitude
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Using the convolution theorem to write the right-hand
side as

R
dk̄ dv x�v, k̄�E �v, k̄� expi�vt 2 k̄z�, expand-

ing the susceptibility to the first order in k̄, v, noting that
k̄ and v under the integral may be written in terms of ≠�≠z
and ≠�≠t acting on E �t, z� and rearranging terms we haveµ
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which implies the field equation with yg given by Eq. (1),µ
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The first term in Eq. (1), ỹg � Re�c��n 1 v≠n�≠v��,
is due to frequency dispersion, and was discussed
in recent papers [1–4]. The second term, ys �
Re��v≠n�≠k���n 1 v≠n�≠v��, is due to the effect of
spatial dispersion, i.e., nonlocal response of the medium to
a probe field. We study dilute systems where the suscep-
tibility is small, jx�v, k�j ø 1, but yg ø c, as it is for
all the EIT experiments carried out so far. As usual, we
consider real-valued group velocities under the condition
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FIG. 1. (a) Three-level atomic L system. (b) Geometry of
ultraslow EIT pulse propagation in the gas of atoms.
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FIG. 2. Ultraslow and negative group velocity of EIT polariton
vs detuning of drive laser; V � 0.25g, kdyT � 100g, gcb �
0.001g, (a) N � 0.6Ncr; (b) N � Ncr; (c) N � 1.5Ncr.

that the imaginary part of dv�dk is negligible. Otherwise
group velocity looses its simple kinematic meaning and
strong absorption governs or prevents propagation of the
light pulse through the medium. The latter is the reason
why the resonant interaction of light with a two-level
medium never results in an ultraslow polariton.

A mono-velocity atomic beam or uniformly moving
sample corresponds to the simple case of spatial disper-
sion, so-called drift dispersion. In the comoving frame
atoms are at rest, there is no spatial dispersion, and the
group velocity is given by the first term of Eq. (1) alone,
ỹg. The Galilean transformation to the laboratory frame,
k � k̃, v � ṽ 2 k̃y, where y is the atomic velocity,
yields the group velocity yg � Re�dv�dk� � ỹg 2 y.

Equation (1) yields the same result, since the suscepti-
bility [5,6] depends only on the combination v 1 ky,

xy�v, k� � x�v 1 ky�

�
im2

abN
h̄

nabGcb 1 V2nca�G�
ac

GabGcb 1 V2 . (2)

Here nab � raa 2 rbb , nca � rcc 2 raa, rii is the
population of the ith level, g and gcb are the relaxation
rates of excited state and c 2 b coherence, respectively
(g ¿ gcb); vab and vcb are the frequencies of the
optical and low frequency transitions (vab ¿ vcb); vd ,
kd and v, k are the frequency and wave number of the
driving and probe fields, respectively, N is the atomic
density, V � jmacEdj�2h̄ is the Rabi frequency of drive
field �1�2�Ed exp�ivdt 2 ikdz� 1 c.c., mac and mab

are the dipole moments of a 2 c and a 2 b transitions,
respectively, Gac � g 1 i�Dvd 1 kdy�, Gab � g 1

i�Dv 1 ky�, Gcb � gcb 1 i�Dv 2 Dvd 1 Dky�,
Dvd � vd 2 vac, Dv � v 2 vab , kd � vd�c, k �
kd 1 vcb�c 1 Dk. We use a standard model with
loss rates (rc � rb � gcb�2), assuming time of flight
broadening of b 2 c transition [6] (Fig. 1), so that in
the absence of fields rcc � rbb � 1�2. According to
Eqs. (1) and (2), we again obtain yg � ỹg 2 y. The
physical reason for this drifting of the pulse is that the
field is basically “seized” by the atoms in the form of
atomic coherance.
An important question is how to input the light pulse into
the gas. One example uses a grid mirror that has the grid
stripes of small area, so that atoms can freely fly through
the mirror, and small spacing between the grid stripes as
compared to the wavelength of light to provide efficient
reflection, as in Fig. 1b. If atoms are at rest, the light
would propagate in the forward direction. However, if the
velocity of atoms is equal to (or larger than) ỹg, one should
see a frozen (or backward) pulse.

Depending on the mechanism of pulse input into
the medium, one should look for the solution of the
problem with initial (time), boundary (space), or mixed
(time-space) conditions. In the case of the initial value
problem, we solve the dispersion equation for v � v�k�,
Fig. 3a. Galilean transformation ensures the same EIT
half-width, DkEIT � V2�gỹg, as for the atoms at rest
since Im�ṽ�k̃�� � Im�v�k��. In the case of the boundary
value problem, we find k � k�v�. The result shows nar-
rowing of the EIT dip proportional to the kinematic factor
a � �ỹg 2 y��ỹg. Indeed, in the accompanying frame
the dispersion relation near EIT resonance can be decom-
posed in a form of a quadratic polynomial, Dk̃ � Dk0 2

i�k0 1 j�Dṽ 2 Dvd�2� 1 �Dṽ 2 Dvd��ỹg. Its
Galilean transformation to the laboratory frame yields

Dk � Dk0 1
1
a

"
dv

ỹg
2 ik0 2 ij

µ
dv

a

∂2
#

, (3)

where dv � Dv 2 Dvd . Coefficients in Eq. (3) can
be easily deduced using Eq. (2). For example, for the
case of one-photon resonance Dvd � 0 at V2 ¿ gcbg,
we have ỹg � h̄V2�2pm

2
abkdN , Dk0 � 0, the resid-

ual absorption coefficient at the center of EIT dip is
k0 � gcb�ỹg, and a coefficient determining the parabolic
profile of absorption in the EIT dip is j � g�V2ỹg.
This approximation is valid if residual absorption is
small, k0j ø �1 2 y�ỹg�2�y2. Absorption increases
twice as much as EIT minimum value at detuning
dvEIT � jỹg 2 yjV

p
gcb�g�ỹg, that is much less than

the EIT half-width DvEIT � DkEITjỹg 2 yj.
Equation (3) shows that the absorption coefficient Imk

is increased and sharpened by a factor �ỹg 2 y��ỹg as
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FIG. 3. Dispersion, ReDv � Re�v 2 vab�, and decay,
ImDv, spectra of the ultraslow EIT polariton according to
numerical solution of the dispersion equation for: (a) atomic
beam [N � 1.1NcrpF�yd�gG�kd] with susceptibility (2);
(b) stationary cell of hot gas (N � 1.1Ncr) with exact sus-
ceptibility (4); V � 0.25g, y � yd � yT , kdyT � 100g,
gcb � 0.001g.
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compared to that in the comoving frame. Since the spec-
trum of the pulse cannot be transformed on the stationary
boundary, only those spectral components that are within
the sharpened EIT dip penetrate deep into the medium. For
drift velocity y . ỹg, the backward EIT polariton can be
excited from inside a cell (Fig. 1b).

In the case of an atomic beam with a moving boundary
(or moving sample), i.e., for the mixed boundary-initial
value problem, the spectrum (inverse duration) of the pulse
shrinks at the moving boundary exactly in the same way as
the EIT width in Eq. (3), Dv � Dṽ�ỹg 2 y��ỹg. This
is not a coincidence, but is necessary for consistency of
viewing of the same process from different frames. The
pulse within the EIT dip decays in time with the same rate
independently of whether it propagates through atoms at
rest or through a beam, since this decay is predetermined
by atomic relaxation gcb , g.

Let us consider a stationary cell of hot atoms. If the
intensity of the drive is strong enough to provide EIT
for the resonant group of atoms (see Fig. 4) but at the
same time weak enough to avoid an interaction with off-
resonant atoms, moving with “wrong” velocities, it is
mainly this drifting beam that would support the ultraslow
EIT polariton with zero or even negative group velocity.

To prove this we calculate the dispersion law v�k� for
the EIT polariton in a hot gas in a cell at rest. The suscepti-
bility is given by an average of the beam susceptibility over
a velocity distribution F�y� of atoms in a gas with ther-
mal velocity yT , x�v, k� �

R1`

2` dy F�y�xy�v, k�. In-
stead of the Maxwellian thermal distribution we can use
Lorentzian, F�y� � yT ��p�y2

T 1 y2��, since the far-off-
resonant tails are not important. This allows us to obtain
simple analytical results because an integration over veloc-
ities is reduced to a sum of a few residues in the simple
poles, y � yj . Only those poles count that lay in the lower
half complex y plane in the formal limit of infinitely large
growth rate Imv ! 2`. For a positive wave number de-
tuning, Dk . 0, there are two such poles. One originates
from Lorentzian, y1 � 2iyT , and the other from the ve-
locity dependent populations, y2 � 2�igG 1 Dvd��kd .
Here gG � g�1 1 V2��gcbg��1�2 determines the veloc-
ity width of an effective drifting beam of atoms that is
driven by an external field into a coherent “dark” state

0
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FIG. 4. The velocity distribution of atoms in a cell (solid line).
Effective drifting beam (dotted) selected by drive laser.
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[5,6], and, hence, responsible for the ultraslow EIT polari-
ton (see Fig. 4). For Dk , 0, there is an additional pole,
y3 ~ 1�Dk, originated from resonance GabGcb 1 V2 �
0 in Eq. (2). However, near EIT resonance, i.e., for small
detuning Dk, it enters the lower half-plane from infin-
ity, y3 ! 2i`, so that its contribution is negligible if
N ø k3

d�gcb�g�
p

kdyT �V.
Calculation of the residues at poles y1 and y2 yields

x�v, k� �
im2

abN
2h̄

"
h1

V2 1 G
�1�
ab G

�1�
cb

1
h2

V2 1 G
�2�
ab G

�2�
cb

#
,

(4)

where h1 � �R1G
�1�
ac 2 G

�1�
cb �1 1 2gR1�gcb����1 1

g2�G2 2 1�R1�V2�, h2 � kdyT R2�V2��G 2 1� 2

G
�2�
cb g��gcbgG, G

�1�
ab � g 1 kyT 1 iDv, G

�2�
ab � g�1 1

Gk�kd� 1 i�Dv 2 kDvd�kd�, G
�1�
ac � g 1 kdyT 1

iDvd , G
�1�
cb � gcb 1 jDkjyT 1 i�Dv 2 Dvd�,

G
�2�
cb � gcb 1 jDkjgG�kd 1 i�Dv 2 Dvd 2 DkDvd�

kd�, R1 � V2��g2 1 �Dvd 2 ikdyT �2�, R2 � V2�
��kdyT �2 1 �Dvd 1 igG�2�.

The susceptibility (4) of a hot gas looks like the suscep-
tibility of a medium consisting of just two monovelocity
components: (i) broad background with velocity y � 0
and linewidth g 1 kdyT , and (ii) a drifting beam with
velocity yd � 2Dvd�kd and power broadened linewidth
g�1 1 G� (see Fig. 4). This interpretation becomes very
accurate near EIT dip, jDv 2 Dvdj ø gG, at the con-
ditions necessary for the existence of freezing ultraslow
EIT polariton: (a) low-frequency coherence decay is much
slower than optical decay (gcb ø g); (b) drifting beam
width is less than Doppler broadening (gG ø kdyT );
(c) detuning of driving and probe fields from one-photon
resonance is large enough (jDvdj ¿ gG) while two-
photon resonance is maintained. Then, for the ultra-slow
EIT polariton, the susceptibility is approximated as

x �
m

2
abN 0

h̄gG

∑
V2

g�1 1 G��v 2 vk�
2 i

∏
, (5)

if we keep only resonant v dependence in denomina-
tors setting everywhere else Dv � Dvd . Here N 0 �
NgGkdyT ���kdyT �2 1 Dv

2
d� ø N is the density of

atoms in the drifting beam. The resonant denominator,
where vk � vab 1 Dvdk�kd 1 igk , gk � gcb 1

V2�g�1 1 G� 1 jDkjgG�kd , comes from the factor
V2 1 G

�2�
ab G

�2�
cb in Eq. (4). Thus, we explicitly find the

frequency and the decay (vk , gk) of the EIT exciton cou-
pling of which to the probe field produces the ultraslow
polariton.

For the boundary value problem, Eq. (5) yields a disper-
sion that is similar to that for the monovelocity beam (3)
with parameters y � yd , ỹ0

g � ��kdyT �2 1 Dv
2
d�V2h̄�

�m2
abNg�1 1 G�k2

dyT �, k0 � gcb�ỹ0
g, j � 1�gkỹ0

g.
For the initial value problem, from the dispersion

equation kc � v�1 1 2px� and Eq. (5), we find disper-
sion law
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Dv � Dvd 2 ydDk 1 igk 2
V2

g�1 1 G�

3

∑
h̄gGDk

2pm
2
abkdN 0

1 i

∏21

, (6)

shown in Fig. 3b. The EIT half-width is Dk0
EIT � gk�ỹ0

g.
For small detuning jDkj ø Dk0

EIT, Eq. (6) yields lin-
ear dispersion and parabolic decay profile, Dv �

Dvd 1 Dk�ỹ0
g 2 yd� 1 igcb 1 iDk2ỹ02�gk . Decay

increases twice as much as EIT minimum value, ImDv �
2gcb , at very small detuning dk0

EIT �
p

gcbgk�
ỹ0

g ø Dk0
EIT. The group velocity describes pulse kine-

matics if dv�dk has a negligible imaginary part, i.e., near
the center of the EIT dip where jDkj , jỹg 2 ydjgk�ỹ02

g.
When the pulse is frozen, yg � ỹ0

g 2 yd � 0, its evolu-
tion is governed by the dispersion of absorption.

Figure 3 clearly shows that the ultraslow EIT polariton
in a hot gas is similar to that in a monovelocity beam,
since detuning of the driving field picks a beam with ve-
locity yd � 2Dvd�kd . However, effective density of
atoms supporting EIT polariton N 0 and EIT width Dk0

EIT �
gk�ỹ0

g in a hot gas are different because of factors gG and
F�y�. As a result, the group velocity at the EIT resonance,
according to Eq. (6), in terms of a critical density is

yg �
bNcr

NF�yd�
2 yd , Ncr �

h̄V

2p2bm
2
ab

r
gcb

g
, (7)

where b � max�ydF�yd��. For Lorentzian F�yd�, we
have b � 1�2p , and yg � �yd 2 y

�1�
d � �yd 2 y

�2�
d �Ncr�

2NyT is a quadratic polynomial over yd , i.e., the group
velocity is zero for drive detunings y

�1,2�
d � yT �N�Ncr 6p

�N�Ncr�2 2 1 � and negative between them for den-
sity higher than the critical value, N . Ncr, as is
shown in Fig. 2. To achieve minimal group velocity,
minyg � 2�yTN�2Ncr� �1 2 �Ncr�N�2�, one has to tune
at yd � yT N�Ncr. The condition to freeze or reverse the
light (yg # 0) means that the group velocity supported by
the drifting beam with the density N 0 � pNF�yd�gG�kd

should be equal to or less than the velocity of atoms in
the beam, i.e., ỹ0

g � ỹgN 0�N # yd . If we compare a
monovelocity beam with a hot gas at yd � y and the
same N 0 as the total density N in a beam to provide the
same group velocity, ỹg � ỹ0

g, we find that the EIT width
and the residual decay in a hot gas are G � V�pgbcg

times less than in a beam. To minimize Ncr the drive
intensity should be as low as possible to decrease ỹ0

g due
to power broadening effect and to avoid EIT contribution
from the atoms with “wrong” (positive) velocities. That is,
the drive intensity should be just above a threshold of the
EIT effect at resonance, V2 . gcbg. For experimental
conditions for 87Rb vapor [4], the critical density is
Ncr � 1011 cm23.

Absorption or time variation of the drive field results
in a spatial or time dependence of the group velocity
in the cell. This allows us to control the pulse in the
0

1

0 1

V
  /

V
g 

   
  T
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FIG. 5. Kinematics of the deceleration of the ultraslow pulse to
the point of freezing (yg � 0) along a cell with decreasing group
velocity yg�z�. Positions of pulse are shown at subsequent mo-
ments of time t � mt [t � 3L�2yg�0�, m � 0, 1, 2, 3]. yg�z�
is calculated numerically according to decreasing drive intensity
found from the wave equation for the same parameters as in
Fig. 3(b), L � 10 cm.

cell. According to geometrical optics, the parameters
of the EIT polariton adiabatically follow the local prop-
erties of the driven atoms. Figure 5 demonstrates how
the ultraslow pulse decelerates up to the point yg � 0
where it is frozen.

The important conclusion is that the drifting beam pro-
vides large enough drift spatial dispersion ≠n�≠k [see
Eq. (1)] to ensure yg # 0. Although the density of drift-
ing atoms is small N 0 ø N , their resonant contribution
dominates. This allows us to make the group velocity zero
or even negative [7]. To observe freezing or backward light
one can look, e.g., for a scattering, luminescence, delay, or
enhanced nonlinear mixing caused by ultra-slow pulse.
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