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Luminescent FeSi2 Crystal Structures Induced by Heteroepitaxial Stress on Si(111)
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The crystal structures and the luminescent properties of FeSi2 in the FeSi2�Si heteroepitaxial sys-
tem have been investigated by first principles calculations. The results indicate that the heteroepitaxial
b-FeSi2 facing Si(111) by the (110) plane will be deformed from an orthorhombic to a monoclinic
P21�c structure with a g angle of 95±. The strained crystal has a direct gap band structure and a finite
oscillator strength of 0.7 between the band edges at the Y point. Since an indirect type band structure is
obtained for other heteroepitaxial relationships, as well as for the bulk b-FeSi2, we propose the strained
FeSi2�110��Si�111� structure to be the origin of the luminescence observed in the FeSi2�Si systems.
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The recent successful fabrication of the b-FeSi2 light-
emitting diode operating at a wavelength of 1.5 mm
demonstrated potential capability of the silicide as a
Si-based light-emitting material [1]. However, the origin
of the light emission in b-FeSi2 is not clearly understood.

In general, an efficient light-emitting material has a di-
rect type band gap structure, so the type of the band gap
structure for b-FeSi2 is the first addressed question. Many
experimental studies on the optical absorption of b-FeSi2
have been reported, and most of them have argued b-FeSi2
has a direct type band gap structure based on the energy de-
pendence of the measured absorption coefficient [2]. How-
ever, some of them indicated that b-FeSi2 has an indirect
type band gap structure [3]. On the other hand, several
first principles calculations on the electronic structure of
b-FeSi2 have been performed [4–12]. As discussed in the
recent work of Moroni et al. [11], a full potential or a pre-
cise pseudopotential method is necessary to study the band
structure of b-FeSi2. By adopting such methods, Moroni
et al. reported that b-FeSi2 has an indirect type band struc-
ture with the top of the valence band at the Y point and the
bottom of the conduction band at the L line [11]. Thus the
type of the band gap structure for b-FeSi2 is controversial.

An efficient light-emitting material has a large value of
oscillator strength, so the value of the oscillator strength for
b-FeSi2 is the second addressed question. Only Eppenga
[5] and we [12] have calculated the oscillator strength in
b-FeSi2. Eppenga obtained a finite value of the oscillator
strength between the band edges along the L line by using
the augmented spherical wave (ASW) method [5]. This
result contradicts our calculation. Because we obtained
zero values for the oscillator strength between the band
edges not only for the Y point but also for the k points
along the L line [12] by using the full-potential linearized
augmented plane wave (FLAPW) method [13]. Thus the
value of the oscillator strength for b-FeSi2 is also con-
troversial. As discussed in Ref. [12], the main difference
between Eppenga’s and our approaches is the treatment of
the potential function, i.e., the atomic-sphere approxima-
tion (ASA) in Eppenga’s calculation and the full potential
in our calculation. In general, the full potential method is
0031-9007�01�86(26)�6006(4)$15.00
more precise than the method within the ASA. So the tran-
sitions between the band edges in the bulk b-FeSi2 should
be forbidden.

To date, the luminescence in b-FeSi2 has been reported
only in the b-FeSi2�Si heterostructures and only at the
low temperatures [14,15], while no luminescence has been
reported in the bulk b-FeSi2 crystals. Those facts infer
that the luminescence is not from the bulk b-FeSi2 crystal
but from the distorted crystal due to the heteroepitaxial
relationship with the Si crystal.

The bulk b-FeSi2 structure has the orthorhombic unit
cell with the space group symmetry of Cmca and lattice
parameters of a � 9.863 Å, b � 7.791 Å, and c �
7.833 Å [16]. It is known that there are three kinds of
heteroepitaxial relations between b-FeSi2 and the Si crys-
tal which give a small misfit strain, i.e., b-FeSi2�100��
Si�001�, b-FeSi2�110��Si�111� (we shall label as type C),
and b-FeSi2�101��Si�111� (we shall label as type D)
[17]. Recently, by using a plane wave basis method, Clark
et al. studied the electronic structure of a strained b-FeSi2
in which the lattice parameters are constrained according
to the epitaxial relationship of b-FeSi2�100��Si�001�
[9]. However, they obtained indirect type band structures
for the b-FeSi2 in the type-A and -B relationships (see
Ref. [9]). By using the linear muffin-tin orbital method
with the ASA, Miglio et al. [10] studied three other
heteroepitaxial structures on Si(111). They showed that
the gap nature is turned from an indirect to a direct when
b-FeSi2 is strained according to the type-C relationship.
They also reported that the indirect gap nature does not
change in the b-FeSi2�100��Si�111� and the type-D rela-
tionships. Thus the type-C structure is a candidate for the
origin of the light emission from the FeSi2�Si systems.
However, the oscillator strength for the strained structure
has not been examined yet.

In this Letter, we investigate strained structures and
luminescent properties of FeSi2 on Si crystal by using
first principles calculations. At first we examine band gap
structures and oscillator strength for the strained structures
studied by Clark et al. and Miglio et al. We show that
the FeSi2 is not luminescent while the crystal keeps the
© 2001 The American Physical Society
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orthorhombic Cmca symmetry even if the crystal is
strained. Next we determine the strained FeSi2 structures
on Si(111) by considering shear deformations. We obtain
a direct type band gap structure and a finite value of
oscillator strength for the sheared crystal, so that we
propose the monoclinic FeSi2 crystal as the origin of the
luminescence observed in the FeSi2�Si systems.

In order to determine the strained structure of FeSi2
on Si(111) we adopted a plane wave basis set for ultra-
soft pseudopotential (USPP) [18] with the generalized
gradient approximations (GGA) [19] for the exchange-
correlation functional. We employed the CASTEP code
[20] to perform the calculations. The nonlinear core
corrections were included [21] for the USPP of Fe. The
special k points were sampled in the Brillouin zone
(BZ) with the scheme of Monkhorst and Pack [22]. The
k points were sampled at a density of 0.05 Å23 in the BZ,
i.e., eight special k points for b-FeSi2. The total energy
converged to 0.02 eV per atom with respect to the total
energy calculated with 18 special k points. For the basis,
plane waves were used up to the cutoff energy of 280 eV.
An increase to 300 eV changed the total energy by only
0.05 eV per atom.

To calculate the oscillator strength we adopted
the FLAPW method based on the density functional
theory within the local density approximation (LDA) for
the exchange-correlation functional. We employed the
WIEN97 code [23] to perform the calculations. Details
of the calculation procedures were given in Ref. [12].
Within the electric dipole approximation, the oscillator
strength between the one-electron eigenstates, m and
n with the energies Em and En, respectively, is described
as fa

mn � 4j�mjpajn�j2��Em 2 En�, where the energies
are in units of Rydberg and pa is the a component
(a � x, y, z) of the momentum operator in atomic units.
Although we did not examine the symmetry of the
irreducible representation of the eigenstates, we con-
sidered the transition as a forbidden one when the
transition probability j�mjpajn�j2 was smaller than
10215. Such a small value comes only from numerical
errors. The zero values in the tables represent such
small values.

First, we examined, by using the FLAPW, the strained
structures studied by Clark et al. [9] and Miglio et al. [10].
In both of the strained structures, distortions of the lat-
tice parameters were considered, but the crystals were
kept in the orthorhombic Cmca symmetry as well as the
bulk b-FeSi2. The results are compiled in Table I. The
band gaps are smaller than the values obtained by Clark
et al. and Miglio et al. We also found other discrepan-
cies in the topology of electronic structures. However, the
important point is that, for all those structures, we ob-
tained zero values of the oscillator strength between the
band edges at the Y point and along the L line. It means
that the transitions are forbidden at the band edges, in those
strained structures.
TABLE I. Calculated electronic band structures for the struc-
tures considered by Clark et al. and Miglio et al. The 64th and
the 65th bands are the valence band maximum and the conduc-
tion band minimum, respectively.

Type k point E64 �eV� E65 �eV� Gap f64-65

A Y 0 10.56 Direct 0
L 20.08 10.77 At Y 0

B Y 0 10.45 Indirect 0
L 20.27 10.37 0

C Y 0 10.25 Direct 0
L 20.23 10.33 At Y 0

D Y 0 10.59 Quasidirect 0
L 10.10 10.22 On L 0

Clark et al. [9] adjusted the lattice parameters of
b-FeSi2 to the Si(001) surface, and considered relax-
ation of the lattice to the direction perpendicular to the
Si(001) surface. But the strained crystal was kept in
the orthorhombic Cmca symmetry. Miglio et al. [10]
adjusted the lattice parameters of b-FeSi2 to the Si(111)
surface. But they considered only the uniform dilatations
for the strained b-FeSi2 structures of the type-C and -D
relationships, so that the strained crystals were also kept in
the orthorhombic Cmca symmetry. However, the crystal
symmetry of the strained b-FeSi2 on Si(111) should be
changed according to the relaxation perpendicular to the
Si(111) surface. For the type-C and -D, the space group
symmetry of the FeSi2 structures should be changed
from the orthorhombic Cmca to the monoclinic P21�c
and C2�c, respectively, caused by the strain along the
[112] direction of Si crystals. In general, a forbidden
transition becomes an allowed one if the symmetry of
the structure is lowered. Therefore, it is inferred that
the recombination at the band edge(s) might be allowed

FIG. 1. Total energy of the P21�c structure of FeSi2 depending
on the angle g at several volumes. V0 denotes volume of the
bulk b-FeSi2. The notation 3 denotes the results of relaxation
of atomic configuration in the unit cell.
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FIG. 2. Total energy of the C2�c structure of FeSi2 depending
on the angle b.

for the monoclinic FeSi2 structures. In addition, it is im-
portant to note that such a symmetry lowering is not ex-
pected for the other heteroepitaxial relationships, such as
b-FeSi2�100��Si�001� and b-FeSi2�100��Si�111�.

Based on the above considerations, we investigated the
monoclinic FeSi2 structures induced by the heteroepitaxial
stress on Si(111). The calculations are performed by the
plane wave basis method. In the calculations, at first we
assumed the same atomic configuration as the bulk crystal
in the unit cell. The c and b axes are fitted to twice the
interatomic distance on Si(111) along the �110� direction
(7.68 Å) of Si crystals for the P21�c and C2�c structures,
respectively. The distances of �a2 1 b2 2 2ab cosg�1�2

and �a2 1 c2 2 2ac cosb�1�2 are fitted to twice of the
interatomic distance on Si(111) along the [112] direction
�13.30 Å� of Si crystal for the P21�c and C2�c structures,
respectively. In the constant volume condition, the total
energy values are functions of the angle between the a
and b axes �g� and between the a and c axes �b� for
the P21�c and C2�c structures, respectively. Figure 1
shows the calculated total energy of the P21�c structure
as a function of the angle g at several constant volumes.

FIG. 3. Electronic band structure of the relaxed P21�c
structure.
6008
FIG. 4. Electronic band structure of the relaxed C2�c
structure.

We obtained the value of 95±, and almost the same vol-
ume as the bulk crystal, for the most stable structure.
The obtained values of the c, a, and b axes are 7.68 Å
�22.0%�, 10.16 Å �13.0%�, and 7.74 Å �20.6%� , respec-
tively. Here, the numbers inside the parentheses indicate
the changes with respect to the values of the bulk b-FeSi2.
Figure 2 shows the same relationships as Fig. 1 for the
C2�c depending on the angle b. Again the structure is
most stable at the angle of 95±, and at almost the same
volume as the bulk crystal. The obtained values of the b,
a, and c axes are 7.68 Å �21.6%�, 10.16 Å �13.0%�, and
7.74 Å �21.1%�, respectively. In both cases, we see that
the b and the c axes are shortened and the a axes are elon-
gated. We can consider that the uniaxial stress along the
direction parallel to the Si(111) surface is compensated by
the shear. In Figs. 1 and 2, the symbols 3 indicate points
after relaxations of the atomic configurations in the unit
cells. The energy values are changed only a few ten meV
per atom by the relaxations. Also the energy shifts during
the relaxations are comparable at the different volumes. So
the angles and volumes of the most stable structures are not
changed by the relaxations. The P21�c structure is more
stable than the C2�c structure by an energy difference of
only 4 meV per atom, i.e., 0.1 eV per unit cell of Fe8Si16.

TABLE II. Calculated electronic band structures for the mono-
clinic FeSi2. The transitions are allowed only via z and y
components of momentum for the P21�c and the C2�c struc-
tures, respectively. The oscillator strength on the G-Z line is
evaluated at the middle point.

Type k point E64 �eV� E65 �eV� Gap fa
64-65

P21�c Y 0 10.27 Direct 0.69
G-Z 20.15 10.35 At Y 1.0 3 1023

C2�c Y 0 10.32 Indirect 0.49
G 20.07 10.09 3.6 3 1025

G-Z 20.06 10.09 4.5 3 1023



VOLUME 86, NUMBER 26 P H Y S I C A L R E V I E W L E T T E R S 25 JUNE 2001
FIG. 5. The oscillator strength and the band gap energy, at
Y point, versus the angle g of the relaxed P21�c structures at
V�V0 � 1.05, 1.0, and 0.95. For the relation between relative
volume and angle, see Fig. 1.

In Figs. 3 and 4 we show the band structures calculated
by the FLAPW for the most stable structures after the re-
laxations of the atomic configurations. We obtained direct
and indirect type band structures for the P21�c and C2�c
structures, respectively. In Table II, the results of the tran-
sition energy and the oscillator strength are compiled. For
both structures, finite values of the oscillator strength be-
tween the band edges were calculated at the Y point and at
the point between G-Z. We obtained the maximum value
of the oscillator strength, namely 0.7, at the Y point, in the
P21�c structure. We propose this transition as the origin
of the light emission from FeSi2 observed in experiments,
because it is the only band edge transition, among the ex-
amined structures, in a direct band structure with a finite
oscillator strength.

There is a discrepancy between the photon energy ob-
served in the experiments, about 0.8 eV, and the calcu-
lated band gap energy, 0.27 eV, which might come from
the characteristic underestimation of gaps in the LDA [24].
However, this should not change our conclusion. Further-
more, as shown in Fig. 5, the oscillator strength increases
as the g angle increases. Also the changes of the band
structures are not drastic during the deformations from the
bulk b-FeSi2 to the strained structures. Particularly, the
sequence of the eigenvalues at the band edges does not
change. So it looks that the oscillator strength became fi-
nite because the symmetry of the wave functions at the
band edges changed due to the symmetry lowering of the
structures.

In conclusion, we have shown that the heteroepitaxial
b-FeSi2 facing to Si(111) by the (110) plane is deformed
from the orthorhombic to the monoclinic P21�c structure
which has the direct type band structure and the finite
oscillator strength value of 0.7.
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