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Limitations in Using Luminosity Distance to Determine the Equation of State of the Universe
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Supernova searches have been been suggested as a method for determining precisely the current value
and time variation of the equation of state, w, of the dark energy component responsible for the accel-
erated expansion of the Universe. We show that the method is fundamentally limited by the fact that
luminosity distance depends on w through a multiple integral relation that smears out information about
w and its time variation. The effect degrades the resolution of w that can be obtained from current data.

DOI: 10.1103/PhysRevLett.86.6 PACS numbers: 98.62.Py, 98.80.Es
Recent observations suggest that most of the energy den-
sity of the Universe consists of a dark energy component
with negative pressure that causes the expansion rate of the
Universe to accelerate [1]. A key challenge for cosmology
and for fundamental physics is to determine the nature of
the dark energy. One possibility is that the dark energy con-
sists of vacuum energy or cosmological constant, in which
case the equation of state is w � p�r � 21, where p is
the pressure and r is the energy density of the dark en-
ergy. An alternative is quintessence [2], a time-evolving,
spatially inhomogeneous energy component with negative
pressure, such as a scalar field slowly rolling down a poten-
tial. For quintessence, the equation of state is typically a
function of redshift, w�z�, whose value differs from 21.
Hence, a precise measurement of w today and its time
variation could distinguish between the two possibilities
and provide important clues about the dynamical proper-
ties of dark energy.

Searches for type Ia supernovae at deep redshift have
provided the most direct evidence that the expansion rate
of the Universe is accelerating [3,4]. The supernovae ap-
pear to be standard candles which can be used to measure
the luminosity distance-redshift relation. By measuring
50 supernovae out to redshift near z � 1, the Supernovae
Cosmology Project (SCP) [3] and the High-z Survey [4]
Project have each found strong evidence that the Universe
is accelerating and that the equation of state of the dark
energy component is negative [5].

A supernova search extended to greater z can make a
much more precise determination of the luminosity dis-
tance as a function of redshift [6,7], dL�z�, perhaps to
better than 1% uncertainty out to redshift z � 2. (1% is
probably an optimistic estimate of the limiting systematic
uncertainty.) Does this enable a precise determination of
the equation of state of the dark energy component and
its time variation? As we show in this paper, the answer
is no. The inherent limitation is theoretical: the luminos-
ity distance depends on w�z� through a multiple-integral
relation that smears out detailed information about w�z�.
Consequently, the value of w�z� today is poorly resolved
and no useful constraint can be obtained about its time
variation.
0031-9007�01�86(1)�6(4)$15.00
The problem can be immediately appreciated from
Fig. 1, which compares dL�z� for an assumed cosmologi-
cal model [Vm � 0.3, VQ � 0.7, and wQ � 20.7 �
const, where Vm,Q is the ratio of the (matter, quintes-
sence) energy density to the critical density] with eight
other models chosen as examples where dL�z� is nearly
degenerate with the assumed model. In this figure and
throughout the paper, we assume the Universe is cosmo-
logically flat and the speed of light c � 1. (Henceforth,
we use the subscript Q to label the dark energy com-
ponent, be it quintessence or cosmological constant.)
Figure 1a shows that dL�z� is nearly identical for the set of
models as individual curves can hardly be distinguished.
Figure 1b displays the percentage deviation of dL�z�
from the assumed model, where it can be seen that the
deviation is less than 1% out to redshift z � 2. Figure 1c
then shows wQ�z� for the respective models. The striking
result is the wide range of wQ�z� that produces nearly
the same dL�z� as the assumed model. If one expands
wQ�z� � w0 1 w1z 1 w2z2 1 . . . , then, for this par-
ticular collection of models, w0 varies between 20.55
and 20.9 (a total span of 50% about the assumed value,
wQ � 20.7) and w1 � dwQ�dz0 varies between 21.1
and 11.6. (The subscript “0” refers to present-day values
of parameters.)

Note that the degenerate models chosen for the illustra-
tion span a larger range of jdwQ�dzj � O �1� than most
realistic models predict. Typically, jdwQ�dz0j ø 1 be-
cause wQ�z� is bounded in most cases to lie between 21
and 11 in order that the dark energy obey the positive
energy condition and be stable under perturbations. The
large uncertainty in w1 � dwQ�dz0 means that little use-
ful information is obtained about the magnitude or sign of
the time variation of wQ . Also, w0 is poorly resolved. The
resolution of wQ�z� degrades significantly further if one
includes the uncertainty in Vm, as shown in Fig. 2 (see
discussion below).

Our conclusion may seem at odds with some projections
of what can be obtained in future supernova searches [6,7].
Many analyses assume wQ � const. If we impose this
condition, then the range of models that fit collapses to the
narrow region between the dashed lines in Fig. 1c, giving
© 2000 The American Physical Society
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FIG. 1 (color). (a) The luminosity distance H0dL�z� for nine
choices of equation of state wQ�z� for the dark energy shown
in (c), where H0 is the current value of the Hubble parameter.
All models have Vm � 0.3. (b) Illustrates that the percentage
deviation of dL�z� from a cosmological model with Vm � 0.3,
VQ � 0.7, and wQ � 20.7 � const is less than 1%. If one
artificially restricts wQ to be constant, then the range of models
collapses to the region between the dashed lines.

a misleading impression that wQ�z� is well resolved. How-
ever, if consideration is extended to models in which wQ is
z dependent, such as the linear form wQ�z� � w0 1 w1z,
the result is dramatically different. A very wide range of
�w0, w1� produces nearly identical dL�z� because the dif-
ferences are smoothed out by the multiintegral relation de-
rived below between luminosity distance and wQ�z�. This
degeneracy accounts for the results found in Figs. 1c and
2, but is missed if one artificially restricts wQ to be con-
stant. Notice in Fig. 1c that including nonlinear forms for
wQ�z� enhances the uncertainty in w0 and w1 even fur-
ther. Among studies which have considered time-varying
wQ�z�, our results agree with some [8–10] but seem sig-
nificantly less optimistic than others [7,11]. In the latter
cases, the assumptions about the observations are simi-
lar but various subtle factors, such as the use of fitting
functions rather than exact expressions for dL�z� or im-
posing the constraint wQ . 21, combine numerically to
reduce artificially the degeneracy. Extending searches to
yet deeper redshift (z . 2) does not help either because
the effect of quintessence on dL�z� is proportional to VQ

which becomes very small at deep redshift.
The key to understanding these conclusions is the rela-

tion between luminosity distance and the equation of state.
The luminosity distance is related to the Robertson-Walker
scale factor a�t� through the equation

dL�z� � �1 1 z�
Z a0

a

da0
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Z 11z

1

dx
H

, (1)

where the redshift z satisfies 1 1 z � a0�a, and H is the
Hubble parameter, H2 � H2

0 �rT �z��rT �0��. We assume a
flat universe. The subscript “T” refers to the total equation
of state of the combined matter-quintessence fluid. Inte-
grating the energy conservation equation,

�rT � 23H�1 1 wT �rT (2)
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and the luminosity distance as
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Equation (4) shows that the luminosity distance depends
on a double integral over the total equation of state, wT �z�.
One integral is required to obtain the total luminosity dis-
tance from the present back to redshift z. The integrand
depends on H which is itself related to wT through the
integral relation, Eq. (3). To distinguish different forms
of dark energy, though, we need to determine wQ�z�, the
equation of state of the dark energy component. Assuming
that the Universe contains only pressureless matter (bary-
onic and cold) and dark energy, then wT � wQVQ , where
VQ is itself related to wQ�z� through an integral relation.
In particular, using the energy conservation analogous to
Eq. (2) for the dark energy component alone �pQ , rQ�, one
obtains

rQ�z�
rQ�0�

� exp

∑
3

Z 11z

1
d lnx�1 1 wQ�

∏
; (5)

combined with Eq. (3), wT � wQVQ � wQrQ�rT can
be reexpressed as

wT �z� � wQ�z�
Ω
1 1

Vm

VQ
exp

∑
23

Z 11z

1
d lnx�wQ�

∏æ21

,

(6)

where Vm,Q refers to the current values. Together with
Eq. (4), this expression constitutes the integral relation be-
tween luminosity distance and wQ�z� that underlies the de-
generacy problem.

To express the degeneracy problem quantitatively, we
have found the maximum likelihood values of w0 and w1
7
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based on current SCP supernova data [3], which has mea-
sured 50 supernova out to redshift z � 1. For simplic-
ity, we have assumed wQ�z� � w0 1 w1z; including more
general functions of z only degrades the resolution further.
Furthermore, we have repeated the analysis based on simu-
lated data from an idealized experiment which measures
thousands of supernovae out to redshift z � 2. The simu-
lated data assume a cosmological model with Vm � 0.3,
VQ � 0.7, and wQ � 20.7 � const. For the idealized
experiment, the absolute magnitude measurement for a
single supernova is taken to have a statistical variance of
0.15 and a systematic measurement error of 0.02. The su-
pernovae are divided into 50 bins between z � 0 and z �
2 such that the statistical and systematic errors averaged
over a bin are comparable, resulting in an error in dL�z�
for a given bin equal to 0.6%. We assume that other types
of observations have constrained Vm to lie between 0.2
and 0.4, say, and marginalize Vm over that range. For the
purposes of illustration, we assume that wQ�z� is a linear
function of z parametrized by w0 and w1. As shown in
Fig. 1c, including more general forms for dL�z� only wors-
ens the degeneracy problem.

We have considered two ways of treating the systematic
errors. For case I, we assume that systematic errors are
random and uncorrelated from bin to bin and perform a
likelihood analysis over the 50 bins with 0.6% error each to
determine the uncertainty in dL�z�. (To obtain 0.6% per bin
for 50 bins requires measuring thousands of supernovae.)
In case II, we assume there is negligible statistical uncer-
tainty but correlated systematic error of 1%. Examples of
case II errors are those due to calibration, dust, or evolu-
tion of supernovae. In this case, all models which predict
dL�z� within 1% of the assumed cosmological model for
all z between 0 and 2 are deemed indistinguishable. As
it turns out, the two-sigma likelihood contours in case I
are roughly equivalent to the indistinguishability region of
case II, so both cases give comparable results.

For the current data, likelihood analyses based on the
assumption that wQ is constant have reported a resolution
of 21 , wQ , 20.6 at the 95% level [5]. When we re-
peat the analysis assuming a linear form for wQ�z� and
making no prior assumptions about w0 and w1, we find
that neither parameter is well determined. The degeneracy
obliterates the resolution of both quantities: w0 can vary
between 23.2 and 20.4 (95% confidence) and w1 can vary
between 211.8 and 11.0. Notice the enormous range of
w0; the 99% confidence contour includes positive values,
so one cannot even be sure that the Universe is accelerat-
ing today. In cases where the Universe is not accelerating
today, we can still conclude that it must have been accel-
erating recently because w1 is highly negative whenever
w0 is positive. One could argue that allowing large val-
ues of w1 so that wQ�z� becomes much less than 21 or
greater than 11 between z � 0 and z � 1 (the range of
current observations) is unphysical based on the positiv-
ity and stability conditions that apply to most (but not all)
8

forms of dark energy. Adding this theoretical constraint,
the two-sigma range for w0 is found to lie between 20.5
and 21.0 (95% confidence), in which case one may con-
clude that the Universe is accelerating today. However, one
should beware that our estimates are optimistic in assum-
ing that wQ�z� has only a linear and constant term. A safer
assessment would be that, assuming positivity and stability
but no other prior about wQ , one can conclude from present
data that the Universe is accelerating today, but wQ is very
poorly resolved, and dwQ�dz can range anywhere within
the imposed positivity and stability constraints.

For the idealized experiment, the likelihood contours
span a substantial range of �w0, w1�, as shown in Fig. 2.
In the shaded ellipses, the figure shows likelihood region
if one assumes prior knowledge that Vm � 0.3 precisely.
The contours stretch along a curve in the w0 2 w1 plane
which corresponds to a near degeneracy. It is this degen-
eracy that dashes hopes of using luminosity distance to
measure both the current value and time derivative of wQ .
Marginalizing over Vm expands the contours along a di-
rection nearly orthogonal to the degeneracy curve. See
the large black contours in Fig. 2. Within the 95% confi-
dence region, wQ spans a range equal to more than 35%
of the assumed value (wQ � 20.7), and w1 � dw�dz0
ranges between 10.3 and 21.1. Expanding the fit to in-
clude nonlinear wQ�z� would expand the region even more
(see Fig. 1).

Another approach for measuring the time evolution
of wQ�z� is object counts, where the objects might be
galaxies, clusters, or halos: dN

dV � ncr2dr , where dN

FIG. 2. One- and two-sigma contours in the �w0, w1� �
���wQ�z � 0�, dwQ�dz0��� plane for an idealized experiment which
measures thousands of supernovae between z � 0 and z � 2.
The supernovae are divided into 50 bins with a net error of
0.6% per bin. The example assumes a model with Vm � 0.3,
VQ � 0.7, wQ � 20.7 � const, indicated by the circle. The
thin shaded ellipses are one- and two-sigma contours if one
assumes Vm is fixed to be precisely 0.3. The broader black
contours are the result if Vm is marginalized over the range 0.2
to 0.4.
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is the number of objects in a comoving volume element
r2drdV for coordinate distance r and solid angle V.
One assumes that the number density of objects per
comoving volume, nc, is constant or some known function
of z. The distance r is related to the luminosity distance
by dL�z� � �1 1 z�r (if we normalize the Friedmann-
Robertson-Walker scale to be unity today). Hence, we
can write

dN
dzdV

� ncr2 dr
dz

� nc
d3

L

�1 1 z�4

∑
�1 1 z�d0

L

dL
2 1

∏
,

(7)

where prime represents derivative with respect to z. The
novel feature here is d0

L�z�, which entails one less integral
of wQ than dL, and, hence, perhaps an improved reso-
lution. Newman and Davis [12] suggest that near-future
observations of the number of dark matter halos as a func-
tion of their circular velocity and redshift can determine

dN
dzdV to within a few percent. Assuming a resolution of
2.5% between z � 0.7 and z � 2 (more optimistic than
their example), we find combinations of w0 and w1 for
which dN�dzdV is indistinguishable from the assumed
cosmological model. The indistinguishability region coin-
cides approximately with the two-sigma contours in Fig. 2.
Hence, object counts are subject to essentially the same de-
generacy problem as supernova searches.

Our analysis has shown that the luminosity distance-
redshift relation and similar classical cosmological mea-
sures are limited in their ability to resolve wQ�z�, even
under optimistic assumptions (an absolutely flat universe,
rather stringent priors for Vm, exceptional accuracy in de-
termining luminosity distance, etc.) These conclusions
hold unless the errors can be reduced by at least 1 order of
magnitude or some complementary experiment can break
the degeneracy. If a method could be found to reduce con-
siderably the uncertainty in Vm — in Fig. 2, we assumed
Vm to be in the range 0.2 to 0.4 — the degeneracy region
shrinks along one direction. This would improve the reso-
lution, but only modestly because there remains the sec-
ond degeneracy direction shown in the figure. It should be
noted that reducing the uncertainty in Vm will be difficult.
Most methods for determining Vm are dependent on some
assumption about wQ . In the case of the CMB anisotropy,
for example, a degeneracy arises such that, for the same
high-precision data, one can derive different values of Vm

depending on what assumption is made about wQ�z� [13].
Of course, if one assumes jdwQ�dzj ø 1 (or some other
prior), then deep supernova searches and galaxy counts can
resolve wQ�z � 0� with impressive precision, but the value
depends strongly on the particular theoretical assumption.

Our conclusions also undermine claims that the super-
nova and object count searches can determine the future
fate of the Universe. Since the observations cannot distin-
guish whether dwQ�dz0 is positive or negative, they cannot
distinguish whether wQ will remain negative or become
positive in the future, and, hence, whether the Universe
will accelerate ever faster or cease accelerating altogether.
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