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Anisotropic Superconducting Properties of Aligned MgB2 Crystallites
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Samples of aligned MgB2 crystallites have been prepared, allowing for the first time the direct identifi-
cation of an upper critical field anisotropy Hab

c2 �Hc
c2 � jab�jc � 1.7, with jo,ab � 70 Å, jo,c � 40 Å,

and a mass anisotropy ratio mab�mc � 0.3. A ferromagnetic background signal was identified, possibly
related to the raw materials purity.
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The recent discovery of superconductivity at 39 K in
magnesium diboride �MgB2� [1] has brought new excite-
ment to the area of basic and applied research on super-
conducting materials. The observation of an isotope effect
[2], a BCS-type energy gap measured by scanning tun-
neling spectroscopy [3], as well as band structure studies
[4,5], points to a phonon-mediated superconductivity in
MgB2. Some reports [6,7] have suggested that MgB2 has
an isotropic (or 3D) behavior, based on measurements done
in polycrystalline samples. However, other studies [8,9]
have also discussed its possible anisotropic nature. The
relatively high values reported for the critical current den-
sity [6,10] �Jc� are possibly indicating the absence of weak
link problems, which are well known in the high-Tc mate-
rials. While polycrystalline MgB2 is very easy to grow and
is a readily available reagent, good-sized single crystals of
this material have not yet been reported, and their develop-
ment promises to be a greater challenge. Here we present
results from samples of aligned MgB2 crystallites that es-
tablish the anisotropy of the upper critical field �Hc2�, thus
implying an anisotropic character for other superconduct-
ing properties, e.g., the energy gap, coherence length �j�,
field penetration depth �l�, and Jc.

In this work, a weakly sintered sample of MgB2 was pre-
pared, starting with a stoichiometric mixture of 99.5 at. %
pure boron and 99.8 at. % pure magnesium, both in chips
form (Johnson Matthey Electronics). The loose mixture
was sealed in a Ta tube under Ar atmosphere, which was
then encapsulated in a quartz ampoule and put into the fur-
nace. The compound formation was processed by initially
holding the furnace temperature at 1200 ±C for 1 h, fol-
lowed by a decrease to 700 ±C (10 ±C�h), then to 600 ±C
(2 ±C�h), and finally to room temperature at a rate of
100 ±C�h. The weakly sintered product was easily crushed
and milled employing mortar and pestle. Using a stereomi-
croscope we could observe a very uniform powder consist-
ing mainly of shiny crystallites, with aspect ratios ranging
from 2 to 5. This is mainly due to the main surface size
distribution ranging from 5 to 40 mm for the larger linear
dimension, since the crystallites’ thickness is very regu-
lar, around 2 mm. The powder was then sieved into a
range of particle sizes between 5 20 mm, which allows
the crystallites fraction to be maximized to almost 100%.
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Small amounts of the powder were then patiently spread
on both sides of a small piece of paper, producing an al-
most perfect alignment of the crystallites, as shown in the
scanning electron microscopy (SEM) picture in the up-
per part of Fig. 1. The lower part of this figure shows
an x-ray diffraction pattern (u-2u scan) from a sample of
the crystallite-painted paper, displaying only the (001) and
(002) reflections coming from the MgB2 phase. A lattice
parameter c � 3.518 6 0.008 Å was evaluated from these
two peak positions. The two small impurity peaks marked
with asterisks were indexed as SiO2. The inset in Fig. 1

FIG. 1. Top: SEM picture showing the well aligned crystallites
and intercrystallite material. Bottom: x-ray diffraction pattern
showing only the (001) and (002) peaks of MgB2, plus two
spurious peaks indexed as SiO2. Inset: rocking curve (v scan)
for the (002) peak, showing an angular spread of about 4.6±

along the crystallites’ c axis.
© 2001 The American Physical Society



VOLUME 86, NUMBER 26 P H Y S I C A L R E V I E W L E T T E R S 25 JUNE 2001
shows a rocking curve (v scan) for the (002) peak that
reveals an angular spread around 4.6±, associated with a
small misalignment of the crystallites’ c axis.

Electron microprobe analysis done on four different
areas between the MgB2 crystallites revealed the follow-
ing average concentration (in at. %) of elements: O (62.9),
C (22.2), Ca (9.48), Si (1.48), Mg (1.44), Al (1.37),
K (0.09), Fe (0.50), Cr (0.21), and Ni (0.09). The first
eight elements in this list were found also in the com-
position analysis made on the same type of paper used
(Canson, ref. 4567-114). Microprobe analysis done also
on the initial Mg and B revealed a few small precipitates,
smaller than 10 mm and containing up to 8 at. % Fe, only
in the Mg chips. This confirms the expectation of Fe be-
ing a common impurity [11] in commercial Mg and sets
a general concern on its possible effects. The average
composition found on top of several crystallites, normal-
ized to the whole MgB2 formula unit, was Mg (30.80),
O (2.20), Ca (0.17), Si (0.07), and Fe (0.06). Although
boron contributes with a fraction of 66.6 at. %, it does not
show up in the microprobe analysis because it is too light.
The contaminants found on top of the crystallites most
possibly came from a surface contamination caused by
the alignment technique, which required vigorous rubbing
on top of the powder, using a steel tweezers tip to spread
the crystallites uniformly. This is corroborated by a fur-
ther analysis done on top of several as-grown crystallites,
which detected only Mg and a small amount of O (possibly
from MgO). This result is consistent with the very small
solid solubility limit of about 0.004 at. % Fe in Mg, which
is known to occur [12] at the solidification temperature
of 650 ±C. The intercrystallite type of rubbish shown in
Fig. 1 is attributed mainly to the paper abrasion, which
produces a varied distribution of irregular grains of paper
fragments. In order to characterize the superconducting
and magnetic properties of the aligned crystallites, we
mounted several samples consisting of a pile of five small
squares �3 3 3 mm2� cut from the crystallite-painted
paper and glued with Araldite resin. Each one of these
samples contains a number of crystallites estimated to
be around 6.5 3 105, totalizing an effective volume of
0.065 mm3, which is reasonably close to 0.060 mm3 that
was evaluated from the expected slope of 21�4p for the
diamagnetic shielding at H � 0.

Figure 2 shows the anisotropic signature of the Hc2�T �
line in the field interval 0 # H # 40 kOe. The values
were taken from the transition onset of the real compo-
nent �x 0� of ac susceptibility, measured using a PPMS-9T
machine (Quantum Design), with an excitation field of
amplitude 1 Oe and frequency 5 kHz. The inset shows an
enlarged view of the x 0�T � curves for H k ab (open sym-
bols) and H k c (solid symbols), the field orientation par-
allel to the ab plane and parallel to the c axis, respectively.
The x 0�T � as well as the M�T � (inset of Fig. 3) measure-
ments, for H � 10 Oe, show sharp transitions at the same
critical temperature Tc � 39.2 K. The dashed lines con-
necting points in Figs. 2–4 are only guides to the eyes.
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FIG. 2. Upper critical field Hc2 vs temperature phase diagram,
for both sample orientations. The stars represent the Hc2 vs T
line from Ref. [13]. The inset shows the real component x 0

of the ac susceptibility vs temperature, measured at several dc
fields for both orientations. Open symbols are for the H k ab
curves and solid symbols for H k c.

Typically, some of the published data on the temperature
dependence [2,10,13,14] of Hc2�T � agree with our result
for Hc2�T � k ab. As an example, the data from Ref. [13]
are plotted in Fig. 2 as stars. This could simply mean
that in polycrystalline samples the transitions are broad-
ened, showing the onset at the highest temperature that
corresponds to the highest critical field available, which
is Hc2�T � k ab.
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FIG. 3. Magnetization loops at 5 K for both sample orienta-
tions, showing a superconducting hysteresis on a ferromagnetic
background. The inset shows a zero field cooling (ZFC) and a
field cooling measured on cooling (FCC) magnetization curve
for H � 10 Oe. We see a sharp transition at Tc � 39.2 K and
a relatively high (�70%) recovery of diamagnetism for the FCC
curve.
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FIG. 4. Magnetization loops at 45 K (above Tc) for both
sample orientations, showing the ferromagnetic behavior of our
sample. The inset shows the hysteretic behavior at low fields.

The ratio h � Hab
c2 �Hc

c2, between the upper critical
field when H is applied parallel to the ab plane, and
when it is along the c direction, was evaluated at different
temperatures, producing h � 1.73 6 0.03. Using the
Ginzburg-Landau mean field expression [15] j�T � �
jo�1 2 T�Tc�21�2 and the results for anisotropic situ-
ations [16,17] Hc

c2�T � � fo��2pj
2
ab� and Hab

c2 �Hc
c2 �

1�´, where fo � 2.07 3 1027 G cm2 is the quantum
of flux (in CGS units) and ´2 � mab�mc is the mass
anisotropy ratio, we find that jo,ab�jo,c � jab�T ��
jc�T � � h � 1.73 and ´2 � 0.3. Since at T � 27 K
we have Hc

c2 � 20 kOe, this implies that jo,ab � 70 Å
and jo,c � 40 Å. The mass anisotropy ratio of MgB2
thus corresponds to a relatively small anisotropy when
compared to the highly anisotropic high-Tc cuprates [17],
such as YBa2Cu3O7 �´2 � 0.04� and Bi2Sr2CaCu2O8
�´2 � 1024�. We do not expect that a likely very small
bulk contamination of the crystallites could eventually
change their anisotropy values. In fact, our careful com-
position analysis has indicated that almost all contami-
nants are located in the region between the crystallites,
thus having a negligible chance to affect the underlying
mechanism of the superconducting condensation.

The magnetization curves M�T� and M�H�, displayed
in Figs. 3 and 4, were measured using a SQUID magne-
tometer (Quantum Design, model MPMS-5). The M�H�
curves (T � 5 K) shown in Fig. 3 are intriguing in the
region 21 & H & 1 kOe, where the maximum shielding
and first field penetration (in the initial virgin state) oc-
cur. For jHj * 1 kOe the hysteretic curves in both field
directions look very similar. However, for jHj * 40 kOe
(not shown here) the magnetization difference between
the up and down curves �DM� becomes smaller than the
noise. Large fluctuations of the magnetic moment were
consistently observed in this field region, for three differ-
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ent samples and temperatures �T � 5, 10, 20 K�, possibly
associated with the high creep rate and the fast drop of Jc

occurring at high fields [10,14,18,19]. Figure 4 shows a
clear signature of the ferromagnetic hysteresis loop mea-
sured at T � 45 K, mainly attributed to the presence of Fe,
Cr, and Ni in the intercrystallite region. The inset displays
an enlarged view close to H � 0 indicating that demag-
netization effects are also observed for the H k ab and
H k c orientations. In a recent detailed study [8] the oc-
currence of Fe contamination has already been identified,
through measurements of MgB2 samples made from com-
mercial powder supplied by a different company.

In view of the superimposed ferromagnetic signal in the
magnetization curves, we found it to be not reliable to dis-
cuss the expected anisotropy in Jc ~ DM, which could be
determined using the Bean model [20]. A rough estimate
for both field orientations gives Jc � 106 A�cm2 at H �
1.5 kOe and T � 5 K (Fig. 3). This calculation neglects
the small influence of the ferromagnetic hysteresis and con-
siders the average crystallite geometry as described before.
However, an anisotropy between Jc�H k c� and Jc�H k ab�
should be expected. Indeed, independently of the differ-
ent regime of vortex pinning, Jc is predicted [17] to be
proportional to j2, leading to Jc�H k c��Jc�H k ab� �
�jab�jc� � Hab

c2 �Hc
c2.

A final cautionary observation has to be addressed to
the possibility that surface superconductivity could also
be occurring for H k ab, since coincidently the surface
nucleation field is [21] Hc3 � 1.7Hc2. However, we have
made several careful measurements of M�H� and x 0�H�,
as well as M�T� and x 0�T �, around the onset of transition,
and no signature [22] of a surface nucleation field was
found. This is consistent with the fact that our Hab

c2 �T �
line agrees with several reported Hc2�T � lines measured in
polycrystalline samples [2,10,13,14], which certainly did
not comply with the boundary condition [21,22] required
for surface nucleation in the ab planes, i.e., H k ab.

In conclusion, we have prepared samples of aligned
MgB2 crystallites that allowed, for the first time, the iden-
tification of an anisotropy for the upper critical field given
by Hab

c2 �Hc
c2 � 1.73, implying an anisotropy of the coher-

ence length jab�jc � 1.73 and a mass anisotropy ratio
mab�mc � 0.3. This could be considered a mild aniso-
tropy when compared to the values found for the high-Tc

materials �mab�mc & 0.04�. The influence of contami-
nants is requiring further work, aimed at a more complete
and reliable characterization of the MgB2 intrinsic proper-
ties. Naturally the production of a good-sized single crystal
of MgB2 is also highly desirable.
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Note added.—Since this manuscript was submitted two
papers have appeared [23,24] showing results consistent
with our anisotropy data.
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