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We observe that the saturation model of deep inelastic scattering predicts a geometric scaling of the
total g�p cross section in the region of small Bjorken variable x. The geometric scaling in this case
means that the cross section is a function of only one dimensionless variable t � Q2R2

0 �x�, where the
function R0�x� decreases with decreasing x. We show that the experimental data from HERA in the
region x , 0.01 confirm the expectations of this scaling over a very broad region of Q2. We suggest
that the geometric scaling is more general than the saturation model.
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It has recently been observed that the ep deep inelastic
scattering (DIS) data at low x [1,2] can be very economi-
cally described with the help of the saturation model [3].
In this model the QCD dipole picture for the total g�p
cross sections was adopted [4–6],

sT ,L�x, Q2� �
Z

d2r
Z 1

0
dz jCT ,L�r , z, Q2�j2ŝ�r , x� ,

(1)
where CT ,L is the wave function for splitting of the trans-
verse (T ) or longitudinal (L) polarized virtual photon into
a qq̄ pair (dipole) and ŝ is the dipole cross section, which
describes the interaction of the dipole with the proton. In
addition, r is the transverse separation of the quarks in the
qq̄ pair, and z is the light-cone momentum fraction of the
photon carried by the quark (or antiquark). As usual, 2Q2

is the photon virtuality and x is the Bjorken variable.
Let us recall that the standard DIS proton structure func-

tions are related to sT ,L by

FT ,L�x, Q2� �
Q2

4p2aem
sT ,L�x, Q2� , (2)

and F2 � FT 1 FL. The wave function of the virtual
photon is given by the following equations:

jCT j
2 �

3aem

2p2

X
f

e2
f��z2 1 �1 2 z�2�Q2

fK2
1 �Qfr�

1 m2
fK2

0 �Qfr�� , (3)

jCLj
2 �

3aem

2p2

X
f

e2
f�4Q2z2�1 2 z�2K2

0 �Qfr�� ,

where the sum is performed over quarks with flavor f,
charge ef , and mass mf , and Q

2
f � z�1 2 z�Q2 1 m2

f .
The functions K0,1 are the Bessel-McDonald functions.

The main assumption of the saturation model concerns
the saturation property of the dipole cross section which is
incorporated in the approach of Ref. [3] as below:

ŝ�x, r� � s0g

µ
r

R0�x�

∂
. (4)
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The function R0�x� with the dimension of length, called
saturation radius, decreases with decreasing x, while
the normalization s0 is independent of x. When r̂ �
r�R0�x� ! ` the function g�r̂� saturates to 1, so that
ŝ�x, r� ! s0. In the realization [3] of the saturation
model g�r̂� � 1 2 exp�2r̂2�4�. The fact that the dipole
cross section (4) is limited by the energy independent
cross section s0 may be regarded as a unitarity bound.
This reflects the fact that the strong rise of DIS structure
functions as x ! 0 has to be tamed by unitarization
effects [7–19].

The characteristic feature of Eq. (4) is its “geometric
scaling”; i.e., ŝ�x, r� depends only on the dimensionless
ratio r�R0�x�, and its energy dependence is entirely driven
by the saturation radius R0�x�. The scaling property of
(4) with s0 independent of x resembles geometric scaling
of hadron-hadron scattering [20]. In this case the relevant
quantity is the scattering amplitude G�b2, s�, where b is
the impact parameter and s is the center-of-mass energy
squared. The geometric scaling in this case corresponds to
the assumption that

G�b2, s� ! G�b� , (5)

where b � b2�R2�s� with R�s� corresponding to the in-
teraction radius which increases with increasing energy.
The analogy between scaling exhibited in hadron-hadron
collisions and in deep inelastic scattering should not be
taken too literally. For example, the two radii have dif-
ferent physical interpretations, and, moreover, they show
completely different energy dependence since the satura-
tion radius R0�x� decreases with increasing energy (for
x 	 Q2�s ! 0).

The assumption about the scaling property of the dipole
cross section (4) has profound consequences for the mea-
sured g�p cross section sg�p � sT 1 sL. If we neglect
the quark masses mf in the photon wave functions (3) we
can rescale the dipole size r ! r�R0�x� in Eq. (1) such
that the integration variables are dimensionless. Thus, after
© 2001 The American Physical Society
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the integration sg�p becomes a function of only one di-
mensionless variable t � Q2R2

0�x�,
sg�p�x, Q2� � sg�p�t� . (6)

The nonzero light quark mass does not lead to a significant
breaking of the scaling (6). Following the discussion in [3]
it is easy to show that we smoothly change the behavior
of (6),

sg�p 
 s0 ! sg�p 
 s0�t (7)

(modulo logarithmic modifications in t), when t changes
from small to large values, respectively. The aim of this
paper is to demonstrate that the DIS data do indeed ap-
proximately exhibit the geometric scaling (6) with the
property (7).

In Ref. [3] the saturation radius form was postulated
in the form R0�x� � 1�Q0 �x�x0�l�2, where Q0 � 1 GeV,
and the parameters x0, l, and s0 were determined from
a fit to DIS data at small x. For a recent related analyses
see [21] and also [22]. R0�x� can also be determined in a
less model-dependent way. Let us observe that after suit-
able extension of the saturation model to the low Q2 region
including the photoproduction limit Q2 � 0, the x depen-
dence of the saturation radius R0�x� can be correlated with
the energy dependence of the total photoproduction cross
section sgp . To do this we replace, following Ref. [3], the
argument in R0�x� by

x̄ � x

µ
1 1

4m2
f

Q2

∂
�

Q2 1 4m2
f

W2 (8)

and keep mf fi 0. W is the total energy of the g�p system.
We note that the saturation model based on Eqs. (1)–(4)
can now be extended down to the region Q2 � 0. The pho-
toproduction cross section is given by Eqs. (1) and (3) with
Q2 � 0, Q̄2

f � m2
f and with x replaced by x̄ � 4m2

f�W2.
The dominant contribution to the photoproduction cross
section comes from the integration region 1�m2

f ¿ r2 ¿

R2
0�x� in the corresponding integral on the right-hand side

in Eq. (1). In this region we can set m2
fK2

1 �mfr� 	 1�r2

and ŝ�x, r� 	 s0. This gives the following relation be-
tween photoproduction cross section and the saturation
radius:

sgp�W � � s̄0 ln

µ
1

m2
fR2

0�x̄�

∂
. (9)

The parameter s̄0 is related to the overall normalization of
the dipole cross section s0 by s̄0 � �2aem�3p�s0. From
Eq. (9) we finally obtain the following prescription for the
saturation radius:

R2
0�x̄� �

1

m2
f

exp

µ
2

sgp

s̄0

∂
. (10)

For sgp we take the Donnachie-Landshoff parametriza-
tion [23]

sgp � ax̄20.08, (11)

where we set mf � 140 MeV (following [3]) in Eqs. (8)
and (10). Using results of the fit presented in [23] we find
a � 68 mb�4m2
f�1 GeV2�0.08. For s̄0 we set 23 mb to

obtain a good description of data.
Let us now confront the implications of geometric scal-

ing (6) with experimental data on deep inelastic scatter-
ing at low x. In Fig. 1 we show experimental data [1] on
the total cross section sg�p plotted versus scaling variable
t � Q2R2

0�x�, with R0�x� obtained from Eq. (10). We in-
clude all available data for x , 0.01 in the range of Q2

values between 0.045 and 450 GeV2. We see that the data
exhibit geometric scaling over a very broad region of Q2.
We can also clearly see the change of shape of the depen-
dence of sg�p on t from the approximate 1�t dependence
at large t to the less steep dependence at small t. The
asymptotic 1�t dependence reflects the fact that the cross
section sg�p scales as 1�Q2 (modulo logarithmic correc-
tions) and its energy dependence is governed by 1�R2

0�x�.
Less steep dependence corresponds to the fact that at small
values of t the total cross section grows weaker with en-
ergy than 1�R2

0�x� due to saturation of the dipole cross
section; see Eq. (4). We also found a symmetry between
the regions of large and small t for the function

p
t sg�p ,

which is illustrated in Fig. 2. For the asymptotic values of
t this is a manifestation of the relations (7). It is remark-
able that Fig. 2 seems to indicate the presence of symmetry
of

p
t sg�p with respect to the transformation t $ 1�t in

the whole region of t.
We have also tried the power law parametrization for

the radius, R2
0�x� 
 xl, where 0.3 , l , 0.4, in particu-

lar the original form proposed in [3], and found that the
data also exhibit the geometric scaling with this choice of
parametrization. The approximate 1�t dependence at large
t corresponds to the x2l behavior of the proton structure
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FIG. 1. Experimental data on sg�p from the region x , 0.01
plotted versus the scaling variable t � Q2R2

0 �x�.
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FIG. 2.
p

t sg�p plotted versus the scaling variable t.

function F2 at large Q2. In the photoproduction case, the
power law parametrization of R0�x� combined with rela-
tion (9) would correspond to the logarithmic dependence
on energy of the photoproduction cross section, i.e.,

sgp 
 ln�x̄� . (12)

We do therefore find that both prescriptions for sgp ,
Eqs. (11) and (12), give numerically similar results.

In Fig. 3 we show contours corresponding to different
values of variable t in �x, Q2� plane together with experi-
mental points for these values of t. Geometric scaling
means that sg�p is constant along each line. To be precise
for each value of t we plot experimental points within the
bin �ln�t� 6 d� with d � 0.1. We see from this figure that
for each t there are several experimental points for which
x varies as much as 2 orders of magnitude and Q2 changes
by a factor of 4. Despite that, all points along each line in
Fig. 3 are transformed to a narrow spread of points for a
particular value of t in Figs. 1 and 2, thus exhibiting geo-
metric scaling.

In order to show that the geometric scaling is confined
to the small x region we plot sg�p in Fig. 4 as a function
of the scaling variable t for the experimental data with
x . 0.01 [1,2]. It is evident that the scaling is signifi-
cantly violated for large x values. We emphasize that the
geometric scaling should predominantly be regarded as a
remarkable regularity of DIS experimental data at low x.
In its essence the new scaling is a manifestation of the
presence of an internal scale characterizing dense partonic
systems, Qs�x� 
 1�R0�x�. This scale emerges from a pio-
neering work of [7], which was generalized in [8–19]. In
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FIG. 3. The lines corresponding to different values of scaling
variable t (continuous curves) in the �x, Q2� plane. The points
correspond to available experimental data located within the
bins ln�t� 6 d (d � 0.1) for each value of t. The numbers
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the analyses [11,18], the scaling properties similar to those
postulated in (4) were found. An independent formulation
[12] of the small x processes leads to the same overall
picture with the saturation scale. At a deeper level, the
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FIG. 4. Experimental data on sg�p from the region x . 0.01
plotted versus the scaling variable t � Q2R2
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geometric scaling for small-x processes may reflect self-
similarity or conformal symmetry of the underlying dy-
namics. More detailed studies are under way; see [16–19].

To sum up we have shown that the experimental data
on deep inelastic ep scattering at low x exhibit geometric
scaling, i.e., the total cross section sg�p�x, Q2� is the func-
tion of only one dimensionless variable t � Q2R2

0�x�.
This regularity was found to hold over the very broad range
of Q2. It would be interesting to understand in detail a pos-
sible dynamical origin of this simple regularity.
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