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Ab initio molecular dynamics calculations are performed for the equation of state of aluminum, span-
ning condensed matter and dense plasma regimes. Electronic exchange and correlation are included with
either a zero- or finite-temperature local density approximation potential. Standard methods are extended
to above the Fermi temperature by using final state pseudopotentials to describe thermally excited ion
cores. The predicted Hugoniot equation of state agrees well with earlier plasma theories and with ex-
periment for temperatures from 0 to 3 3 106 K.
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Molecular dynamics (MD) simulations are widely used
to compute equilibrium properties of condensed matter,
with ab initio methods reaching predictive accuracy. Ions
are treated classically while electrons are included in the
Born-Oppenheimer approximation and in the local density
approximation (LDA) to density functional theory (DFT)
[1], including electron temperature with the Mermin for-
malism [2]. Such methods have already been applied to
liquid metals, for moderate temperatures and degenerate
electrons [3]. They can be extended to higher temperature
using a temperature-dependent exchange and correlation
potential [4]. This Letter reports on a further extension to
dense matter at temperatures as high as 3 3 106 K, i.e.,
into the plasma regime. With suitable refinements, MD is
ideally suited to theoretical studies of dense plasmas in the
strongly interacting limit.

Ab initio MD is typically performed in a plane wave
basis using a pseudopotential to eliminate the ion core or-
bitals. This limits the maximum allowed temperatures to
kBT , 10 eV, else thermal depopulation of shallow core
levels invalidates the usual rigid core assumption. The
restriction could be avoided by pseudopotentials with the
shallow core states in the valence manifold, e.g., an Al111

ion rather than the usual Al13. However, such calcu-
lations are prohibitively expensive in a plane wave ba-
sis. Recently, pseudopotentials were applied to core-level
photoemission, in which a photoexcited hole occurs in an
otherwise filled core shell [5–8]. An excited-core atomic
calculation is performed in constrained DFT, assuming that
the core-hole lifetime is long and neighboring electrons re-
lax under the perturbation. A second pseudopotential is
generated for this configuration, giving a new pseudoatom
with increased ionic charge. The modified pseudoion is
then treated as an impurity species in standard pseudo-
potential calculations for the solid.

This final state pseudopotential idea is extended here to
calculations for a moderate Z plasma, that of shock com-
pressed aluminum. Multiple ion configurations (singly,
doubly core ionized, etc.) will occur dynamically at the
highest temperatures considered. These can be accounted
for by supposing fictitious core-hole dynamics, viz., transi-
tions among the discrete ionization configurations are ap-
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proximated with a continuously fluctuating, classical state
vector. We report results from 0 to 3 3 106 K, at which
point K-shell ionization is occurring [9]. The predictions
are in good agreement with experiment and with existing
theories up to the highest calculated temperature. There
are, in principle, no artificial discontinuities in the calcu-
lated Hugoniot equation of state between high and low
temperatures because a single method encompasses the
limits.

The calculations reported here employ a time-
independent thermal average of integrally ionized core
states [10], which yields a fractionally charged pseudoion.
An ensemble average for the atomic core is obtained from
the partition function, Z �

P
i Di exp�2b�Ei 2 mNval

i ��,
using constrained LDA total energies Ei , for isolated
neutral atoms of core configuration i, with degeneracy
Di , and including a chemical potential m for the free
valence electrons that is taken from the self-consistent
MD calculations. The atomic orbitals and energies are
obtained from an existing program [11], modified for
ionized core shells. These constrained DFT total energies
approximately include a Hubbard repulsion which is miss-
ing from the usual average atom approximation [12] (e.g.,
the doubly ionized core energy exceeds twice the singly
ionized energy [13]). The chemical potential imposes an
approximate chemical equilibrium between the core and
valence subsystems, which are treated separately in the
pseudopotential approach [14]. The excited atomic core
yields a contribution to the internal energy of the system
that must be added to the pseudopotential calculations.
In terms of the expected energies of pseudoelectron and
all-electron atoms derived from Z , the correction per atom
is DU � �Eall-el� 2 �Epseudo�. The entropy of the ion
cores makes no contribution to the Hellmann-Feynman
stress tensor.

The predicted ensemble average does not include the
effects of interactions with neighboring ions or the elec-
tron gas upon embedding the ion in the plasma environ-
ment. Changes in total energy or potential on transferring
the atomic cores from vacuum to the plasma environment
are, therefore, absent from this model. However, errors
on the order of eV, characteristic of chemical differences,
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make small changes to the predicted concentrations of core
species at the temperatures where core ionization is promi-
nent. So-called continuum lowering [15,16] is similarly
neglected. Finally, the repulsion of overlapping, filled core
shells and the hybridization effect from core-hole delocal-
ization between adjacent ions are not included. Overlap of
cores does occur at elevated temperatures and pressures,
so a more compressible Hugoniot will result from this last
omission.

MD calculations are performed for a neutral, fixed vol-
ume cubic cell of either 32 or 4 atoms (the latter only for
temperatures of 300 000 K and higher). Brillouin zone
sampling of the 4-atom calculations includes eight �k points
for temperatures up to 1.5 MK; all other calculations use
only the G point. The valence electron chemical poten-
tial is self-consistently determined so as to give the correct
total number of electrons for a truncated, finite spectrum
of eigenvalues. Valence electrons are subsequently kept
on the Born-Oppenheimer surface at a fixed temperature
Tele by conjugate gradient minimization. An increasing
number of conduction bands are required to assess the
Fermi-Dirac occupations at higher temperatures [17].

MD time steps ranging from 1.25 to 6 atomic units are
used to perform molecular dynamics by Verlet integration.
These are smaller than usual, to give average atomic dis-
placements per time step that are comparable to previous
MD studies. A Maxwellian distribution of velocities is
initially chosen such that 3

2kTion � Ekin
ion �Nion � 3

2kTele.
The ions are subsequently allowed to reach thermo-
dynamic equilibrium by MD, before computing thermo-
dynamic expectations. Tion fluctuates during MD, so the
atomic velocities are scaled to restore Tion whenever it
instantaneously departs from Tele by more than (typically
[18]) 10%–15%. Ionic pressure contributions are given
by �Pion�V � NionkB�Tion�, and electronic pressures
are obtained from the Hellmann-Feynman stress tensor
[19,20].

The Rankine-Hugoniot relation,

�U 2 U0� 2 �P�V0 2 V ��2� � 0 , (1)

for internal energy U, pressure P, and volume V , achieved
by shock from initial conditions P0 � 0, U0, V0, is eas-
ily evaluated by this prescription [21]. Statistical fluctua-
tions are minimized by taking the ensemble average of the
difference ��U 2 U0� 2 �P�V0 2 V ��2��. At the highest
temperatures, the predicted Hugoniot equation of state is
insensitive to the number of atoms in the MD cell. As evi-
dence, Fig. 1 displays Eq. (1) versus volume as calculated
for 4- and 32-atom unit cells at 300 000 K; the Hugoniot
point lies at the zero of the ordinate. The predicted den-
sity varies by only 0.5% between the 4- and 32-atom cases.
Such insensitivity appears to result from ion-ion pair corre-
lations that are dominated by short range repulsion at these
temperatures. Figure 2 shows the pair-correlation function
plotted to distances of one-half of the unit cell length for the
two systems. In principle, a bridge function can be fitted
FIG. 1. Comparison of the Hugoniot relation, Eq. (1), versus
density as calculated by MD for T � 300 000 K. A linear de-
pendence is evident over this small range in densities. The lower
set of points are from 32-atom calculations, the upper are for
four atoms. Each data point is derived from between 1500 to
6000 equilibrated time steps. A systematic size dependence is
visible; however, the 4-atom calculations are sufficiently accu-
rate for these extreme conditions.

to the results and an improved treatment of the ionic sys-
tem could be made [22]. However, the 4-atom simulation
seems to adequately describe the available configurations.

Considerable experimental data exist for shocked Al
[23–30]. The MD results are in good agreement, as seen
in Fig. 3. Points are displayed for T � �3, 2.25, 1.75, 1.5,
1.0, 0.75, 0.5, 0.4, 0.3, 0.144� 3 106 K with fractionally
ionized cores appropriate to the temperature and with
filled cores at 75 000 and 30 000 K. Lower temperature
calculations were also performed, but are not shown. A
solid line marks a cubic spline interpolation of the MD
points calculated using a parametrized exchange and

FIG. 2. Ion-ion pair correlation functions as calculated from
the 32-atom (small filled circles) and 4-atom ensembles (large
open circles). The 4-atom unit cell adequately reproduces the
correlation function out to the average neighbor separation, at
which point the effective interactions are evidently small and
gii � 1.
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FIG. 3. Comparison of the MD Hugoniot to experimental data
from Refs. [23–30] (filled circles) and to other theoretical re-
sults: QEOS [40] (dotted line), ACTEX [38] (dashed line),
and INFERNO [33] (solid line). The MD calculations with
zero-T exchange and correlation are shown with open stars
(32 atoms�cell) or circles (4 atoms�cell), and include an interpo-
lating spline curve. Four-atom calculations with the correspond-
ing finite-temperature LDA correction lie at increased density
and nearly unchanged pressures, and are shown with open tri-
angles and no interpolating line. Statistical uncertainties in the
MD results are comparable to the sizes of the symbols displayed.
Additional calculations for 4- and 32-atom systems at tempera-
tures as high as 0.75 MK (not shown) yield essentially identical
results.

correlation potential for the ground state electron gas
[31]. Additional calculations include a finite-temperature
exchange and correlation correction [32]. The corrected
results are shown as open triangles at increased compres-
sions, with no interpolating spline curve.

There are numerous theoretical treatments of the dense
plasma regime [33–39] available for comparison. Three
such equations of state are also shown in Fig. 3. The
experimental error bars at the higher pressure points are
too large to discriminate between the different theories.
QEOS is a Thomas-Fermi theory [34,40] which employs a
simplified treatment of atomic shell structure. Therefore,
it lacks the reversal (decrease) in density with increas-
ing shock strength that the other theories display, which
occurs as a result of increasing ionization in the Al L
shell. INFERNO is a cell model treatment of a single-ion
core using a zero-T LDA potential [12,33]. The cusps
in the MD and INFERNO Hugoniots, due to successive
L- and K-shell ionization, are very similar in appearance,
although the predicted maximum densities differ apprecia-
bly. INFERNO uses an average atom approximation and
a simplified atomic pair-correlation function, which might
account for this difference. ACTEX is a perturbational,
explicitly many-body (non-DFT), plasma theory [38]. It
treats electrons quantum mechanically and accounts for the
Coulombic ion-ion repulsion, but leaves out contributions
from core overlap. The finite-T MD results are in broad
agreement with ACTEX, especially regarding the maxi-
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mum density achieved by single shock. However, the de-
tails of the Hugoniot curves are notably different between
MD and ACTEX. For example, the cusp in ACTEX at
200–1000 Mbar, which is attributed to ionization of 2s
and 2p subshells, is entirely absent from the MD and
INFERNO results. This may arise from the DFT atomic
energies used in both MD and ACTEX.

In conclusion, first principles molecular dynamics
calculations are applied to the Hugoniot equation of state
of shock compressed aluminum. The valence electrons are
treated with reliable, fully quantum mechanical methods
and the Coulomb repulsion and many-body correlation
among classical ions are included explicitly by molecular
dynamics. At low temperatures (T , 10 000 K), the
method is typical of ab initio MD calculations. The Mer-
min formalism for electronic free energy and a finite-T
exchange and correlation extend the method to
T , 100 000 K. Finally, the recently developed final
state pseudopotential method based on constrained DFT
is used for yet higher temperatures, up to 3 3 106 K.
This marks the first use of ab initio MD methods in the
plasma regime. The results are in good agreement with
plasma theories and experiment even at the most extreme
temperatures considered so far. The core excitation
energies and the resulting ionization state are not pre-
cisely self-consistent for the ion in plasma. In principle,
improved pseudopotentials are easily generated for this
situation. It is also straightforward to include the effects
of ion-ion core overlap repulsion via an additive short
range interaction potential in the MD. These corrections
should yield a quantitatively reliable equation of state
for the regime of strongly coupled, warm dense plasmas.
Work on these topics is ongoing.
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