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QCD at finite isospin chemical potential mI has no fermion sign problem and can be studied on the
lattice. We solve this theory analytically in two limits: at low mI , where chiral perturbation theory is
applicable, and at asymptotically high mI , where perturbative QCD works. At low isospin density the
ground state is a pion condensate, whereas at high density it is a Fermi liquid with Cooper pairing.
The pairs carry the same quantum numbers as the pion. This leads us to conjecture that the transition
from hadron to quark matter is smooth, which passes several tests. Our results imply a nontrivial phase
diagram in the space of temperature and chemical potentials of isospin and baryon number.
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Introduction.—Ample knowledge of QCD in the
regime of finite temperature and baryon density is crucial
for understanding a wide range of phenomena from
heavy ion collisions to neutron stars and cosmology.
First-principles lattice numerical Monte Carlo calculations
provide a solid basis for our knowledge of the finite-
temperature regime. However, the regime of finite baryon
chemical potential mB is still inaccessible by Monte
Carlo because the present methods of evaluating the QCD
partition function require taking a path integral with a
measure which includes a complex fermion determinant.
Ignoring the determinant (as in the popular quenched
approximation) leads to qualitatively wrong answers for
finite mB [1]. Such a contrast to the case of mB � 0,
where the quenched approximation proved useful, comes
from the fact that the latter corresponds to a nonphysical
theory with pairs of quarks of opposite baryon charges
(conjugate quarks) [2]. This is one of the main reasons
why our understanding of QCD at finite baryon density
is still rudimentary. Many interesting phenomena, such
as color superconductivity and color-flavor locking [3],
occur at finite baryon density, beyond the reach of current
lattice techniques.

To understand the regime of finite baryon density, one
would need to follow the transition from hadronic to quark
degrees of freedom by increasing the density of a con-
served charge (such as baryon number), i.e., without in-
voking the temperature. This is the motivation for us to
turn to QCD at finite chemical potential mI of isospin
(more precisely, of the third component I3). Nature pro-
vides us with nonzero mI systems in the form of isospin-
asymmetric matter. These always contain both isospin
density and baryon density. In any realistic setting mI ø
mB. In this paper, however, we shall consider an idealiza-
tion in which mI is nonzero while mB � 0. Such a sys-
tem is unstable with respect to weak decays which do not
conserve isospin. However, since we are interested in the
dynamics of strong interaction alone, one can imagine that
all relatively slow electroweak effects are turned off. Once
0031-9007�01�86(4)�592(4)$15.00
this is done, we have a nontrivial regime which, as has been
emphasized recently in [4], is accessible by present lattice
Monte Carlo methods, while being, as we shall see, ana-
lytically tractable in various interesting limits. As a result,
the system we consider has a potential to improve substan-
tially our understanding of cold dense QCD. This regime
carries many attractive traits of two-color QCD [5,6], but
is realized in a physically relevant theory —QCD with
three colors.

Positivity and QCD inequalities.—Since the Euclidean
version of our theory has a real and positive fermion de-
terminant, some rigorous results on the low-energy be-
havior can be obtained from QCD inequalities [6,7]. In
vacuum QCD, the latter rely on the following property of
the Euclidean Dirac operator D � g ? �≠ 1 iA� 1 m:

g5Dg5 � Dy, (1)

which, in particular, implies positivity detD $ 0. For the
correlator of a generic meson M � cGc , we can write,
by using (1) and the Schwartz inequality:

�M�x�My�0��c ,A � 2�TrS �x, 0�GS �0, x�G �A

� �TrS �x, 0�Gig5S
y�x, 0�ig5G �A

# �TrS �x, 0�Sy�x, 0��A , (2)

where S � D21 and G � g0Gyg0. The inequality is
saturated for mesons with G � ig5ti , since D commutes
with isospin ti , which means that the pseudoscalar cor-
relators are larger, point-by-point, than all other I � 1
meson correlators [8]. As a consequence, one obtains an
important restriction on the pattern of the symmetry break-
ing: for example, it cannot be driven by a condensate of
�cg5c�, which would give 01 Goldstones.

At finite isospin density, mI fi 0, positivity still holds
[4] and certain inequalities can be derived (in contrast with
the case of mB fi 0 when there is no positivity). Now
D � g ? �≠ 1 iA� 1

1
2mIg0t3 1 m, and Eq. (1) is not
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true anymore, since the operation on the right-hand side
of (1) changes the relative sign of mI . However, provided
mu � md , interchanging up and down quarks compensates
for this sign change (the u and d quarks play the role of
mutually conjugate quarks [2]), i.e,

t1g5Dg5t1 � Dy. (3)

Instead of isospin t1 in (3) one can also use t2 (but not
t3). Equation (3), in place of the now invalid Eq. (1),
ensures that detD $ 0. Repeating the derivation of the
QCD inequalities, by using (3) we find that the lightest
meson, or the condensate, must be in channels cig5t1,2c,
i.e., a linear combination of p2 � ug5d and p1 � dg5u
states. Indeed, as shown below, in the two analytically
tractable regimes of small and large mI the lightest mode
is a massless Goldstone which is a linear combination of
ug5d and dg5u.

Small isospin densities.—When mI is small compared
to the chiral scale (taken here to be mr), we can use
chiral perturbation theory. For zero quark mass and zero
mI the pions are massless Goldstones of the sponta-
neously broken SU�2�L 3 SU�2�R chiral symmetry. If
the quarks have small equal masses, the symmetry is only
SU�2�L1R . The low-energy dynamics is governed by the
familiar chiral Lagrangian for the pion field S [ SU�2�:
L �

1
4f2

pTr�≠mS≠mSy 2 2m2
pReS	, which contains

the pion decay constant fp and vacuum pion mass mp

as phenomenological parameters. The isospin chemical
potential further breaks SU�2�L1R down to U�1�L1R . Its
effect can be included to leading order in mI without
additional phenomenological parameters by promoting
SU�2�L 3 SU�2�R to a local gauge symmetry and viewing
mI as the zeroth component of a gauge potential [6].
Gauge invariance thus fixes the way mI enters the chiral
Lagrangian:

Leff �
f2

p

4
Tr=nS=nSy 2

m2
pf2

p

2
ReTrS , (4)

where the covariant derivative is defined as

=0S � ≠0S 2
mI

2
�t3S 2 St3� . (5)

By using (4), it is straightforward to determine vacuum
alignment of S as a function of mI and the spectrum of
excitations around the vacuum. We are interested in nega-
tive mI , which favors neutrons over protons, as in neutron
stars. The results are very similar to two-color QCD at
finite baryon density [6]:

(i) For jmI j , mp , the system is in the same ground
state as at mI � 0: S � 1. This is because the lowest ly-
ing pion state costs a positive energy mp 2 jmI j to excite,
which is impossible at zero temperature.

(ii) When jmI j exceeds mp it is favorable to excite p2

quanta, which form a Bose condensate. In the language of
the effective theory, such a pion condensate is described
by a tilt of the chiral condensate S,
S � cosa 1 i�t1 cosf 1 t2 sinf� sina ,

cosa � m2
p�m2

I .
(6)

The tilt angle a is determined by minimizing the vac-
uum energy. The energy is degenerate with respect to the
angle f, corresponding to the spontaneous breaking of the
U�1�L1R symmetry generated by I3 in the Lagrangian (4).
The ground state is a pion superfluid, with one massless
Goldstone mode. Since we start from a theory with three
pions, there are two massive modes which can be identi-
fied with p0 and a linear combination of p1 and p2. At
the condensation threshold, mp0 � mp and the mass of
the other mode is 2mp , while for jmI j ¿ mp both masses
approach jmI j.

The isospin density is found by differentiating the
ground state energy with respect to mI and is equal to

nI � f2
pmI sin2a � f2

pmI

µ
1 2

m4
p

m
4
I

∂
, jmI j . mp .

(7)

For jmI j just above the condensation threshold, jmI j 2

mp ø mp , Eq. (7) reproduces the equation of state of the
dilute nonrelativistic pion gas [6].

It is also possible to find baryon masses, i.e., the en-
ergy cost of introducing a single baryon into the sys-
tem. The most interesting baryons are those with lowest
energy and highest isospin, i.e., neutron n and D2 iso-
bar. There are two effects of mI on the baryon masses.
The first comes from the isospin of the baryons, which
effectively reduces the neutron mass by 1

2 jmI j and the
D2 mass by 3

2 jmI j. Alone, this effect would lead to
the formation of baryon/antibaryon Fermi surfaces, mani-
fested in nonvanishing zero-temperature baryon suscepti-
bility xB � ≠nB�≠mB when mI .

2
3mD. However, long

before that, another effect turns on: the p2’s in the con-
densate tend to repel the baryons, lifting up their masses.
These effects can be treated in the framework of the baryon
chiral perturbation theory [9], giving

mn � mN 2
jmI j

2
cosa, mD2 � mD 2

3jmI j

2
cosa

(8)

in the approximation of nonrelativistic baryons. Equation
(8) can be interpreted as follows: as a result of the rotation
(6) of the chiral condensate, the nucleon mass eigenstate
becomes a superposition of vacuum n and p states. The
expectation value of the isospin in this state is proportional
to cosa appearing in (8). With cosa given in Eq. (6), we
see that the two mentioned effects cancel each other when
mp ø jmI j ø mr . Thus the baryon mass never drops
to zero, and xB � 0 at zero temperature in the region of
applicability of the chiral Lagrangian.

As one forces more pions into the condensate, the pions
are packed closer and their interaction becomes stronger.
When mI � mr , the chiral perturbation theory breaks
down. To find the equation of state in this regime, full
593
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QCD has to be employed. As we have seen, this can be
done using present lattice techniques since the fermion
sign problem is not present at finite mI , similar to the
two-color QCD [5].

Asymptotically high isospin densities.— In the oppo-
site limit of very large isospin densities, or jmI j ¿ mr ,
the description in terms of quark degrees of freedom ap-
plies since the latter are weakly interacting due to asymp-
totic freedom. In our case of large negative mI , or nI ,
the ground state consists of d quarks and u antiquarks
which, neglecting the interaction, fill two Fermi spheres
with equal radii jmI j�2. Turning on the interaction be-
tween the fermions leads to the instability with respect to
the formation and condensation of Cooper pairs, similar, to
some extent, to the diquark pairing at high baryon density
[3]. In our case, mI , 0, the Cooper pair consists of a u
and a d in the color singlet channel. The order parameter
has the same quantum numbers as the pion condensate at
lower densities,

�ug5d� fi 0 . (9)

Because of Cooper pairing, the fermion spectrum acquires
a gap D at the Fermi surface, where

D � bjmI jg
25e2c�g, c � 3p2�2 , (10)

where g should be evaluated at the scale jmI j. This be-
havior comes from the long-range magnetic interaction, as
in the superconducting gap at large mB [10]. The constant
c is smaller by a factor of

p
2 compared to the latter case

due to the stronger one-gluon attraction in the singlet qq
channel compared to the 3 diquark channel. Consequently,
the gap (10) is exponentially larger than the diquark gap
at comparable baryon chemical potentials. By using the
methods of [11], one can estimate b 
 104.

The perturbative one-gluon exchange responsible for
pairing at large mI does not distinguish ud and ug5d chan-
nels: the attraction is the same in both. The ug5d channel
is favored by the instanton-induced interactions, which ex-
plains the fact that the condensate is a pseudoscalar and
breaks parity. This is consistent with our observation that
QCD inequalities also constrain the I � 1 condensate to
be a pseudoscalar at any mI .

Quark-hadron continuity.—Since the order parameter
(9) has the same quantum numbers and breaks the same
symmetry as the pion condensate in the low-density
regime, it is plausible that there is no phase transition
along the mI axis. In this case the Bose condensate of
weakly interacting pions smoothly transforms into the
superfluid state of ud Cooper pairs. The situation is very
similar to that of strongly coupled superconductors with
a “pseudogap” [12], and possibly of high-temperature
superconductors [13]. This also parallels the continu-
ity between nuclear and quark matter in three-flavor
QCD as conjectured by Schäfer and Wilczek [14]. We
594
hence conjecture that, in two-flavor QCD, one can move
continuously from the hadron phase to the quark phase
without encountering a phase transition. Since a first order
deconfinement phase transition at intermediate isospin
chemical potential cannot be rigorously ruled out (though
it is unlikely, see below), this conjecture needs to be
verified by lattice calculations.

A number of nontrivial arguments support the continuity
hypothesis. One notices that all fermions have a gap at
large jmI j, which implies that xB � 0 at T � 0. This is
also true at small mI . It is thus natural to expect that xB

remains zero at T � 0 for all mI , which also suggests one
way to check the continuity on the lattice.

Another argument comes from considering the limit of
a large number of colors Nc. In finite-temperature QCD,
the fact that the number of gluon degrees of freedom is
O �N2

c � while that of hadrons is O �N0
c � hints at a first order

confinement-deconfinement phase transition. At very
large mI , thermodynamic quantities such as the density
of isospin nI are proportional to Nc. On the other hand,
in the large Nc limit the pion decay constant scales as
f2

p � O �Nc�, and according to Eq. (7) the isospin density
in the pion gas is also proportional to Nc. Physically,
the repulsion between pions becomes weaker as one
goes to large Nc, thus more pions are stacked at a given
chemical potential. As a result, the Nc dependence of
thermodynamic quantities is the same in the quark and the
hadronic regimes.

Confinement.—At large mI , gluons softer than D are
not screened by the Meissner or by the Debye effect [15]:
the condensate does not break gauge symmetry (in contrast
to the color superconducting condensate [3]) and there are
no low-lying color excitations to screen the electric field.
Thus, the gluon sector below the D scale is described by
pure gluodynamics, which is confining. This means that
there are no quark excitations above the ground state: all
particles and holes must be confined in colorless objects,
mesons, and baryons, just like in vacuum QCD. If there
is no transition along the mI axis, we expect confinement
at all values of mI . Since the running strong coupling as

at the scale of D is small, the confinement scale L
0
QCD

(which is, in general, different from LQCD) is much less
than D. At large mI , we thus predict a temperature driven
deconfinement phase transition at a temperature T 0

c of order
L

0
QCD, which is expected to be of first order as in pure

gluodynamics. Since L
0
QCD ø D the hadronic spectrum

is similar to that of a heavy quarkonium, with D playing
the role of the heavy quark mass.

The �T , mI � phase diagram.—By considering nonzero
mI , we make the phase diagram of QCD three dimensional:
�T , mB, mI �. Two planes in this three-dimensional space
are of special interest: the mB � 0 �T , mI � plane, which
is completely accessible by present lattice techniques, and
the T � 0 �mI , mB� plane, where the neutron star matter
belongs. Two phenomena determine the �T , mI � phase
plane (Fig. 1): pion condensation and confinement.
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FIG. 1. Phase diagram of QCD at finite isospin density.

At sufficiently high temperature the condensate (9) melts
(solid line in Fig. 1). For large mI , this critical tempera-
ture is proportional to the BCS gap (10). There are two
phases which differ by symmetry: the high-temperature
phase, where the explicit flavor U�1�L1R symmetry is re-
stored, and the low-temperature phase, where this symme-
try is spontaneously broken. The phase transition is in the
O(2) universality class [16]. The critical temperature Tc

vanishes at mI � mp and is an increasing function of mI

in both regimes studied: jmI j ø mr and jmI j ¿ LQCD.
Thus, it is likely that Tc�mI� is a monotonous function of
mI . In addition, at large mI , there is a first order deconfine-
ment phase transition at T 0

c much lower than Tc�mI �. Since
there is no phase transition at mI � 0 (for small mu,d)
or at T � 0 (assuming quark-hadron continuity), this first
order line must end at some point A on the �T , mI� plane
(Fig. 1). The exact location of A should be determined
by lattice calculations; one of the possibilities is drawn
in Fig. 1.

The �mI , mB� phase diagram.—This phase diagram de-
serves a separate study. Here we shall only consider
the regime jmI j ¿ mB (the opposite limit mB ¿ jmI j
was considered in Ref. [17]). Finite mB provides a mis-
match between u and d Fermi spheres, which makes the
superconducting state unfavorable at some value of mB

of order D. It is known [18] that the destruction of
this state occurs through two phase transitions: one at
mB slightly below D�

p
2 and another at mB � 0.754D.

The ground state between the two phase transitions is
the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state [18],
characterized by a spatially modulated superfluid order pa-
rameter �ug5d� with a wave number of order 2mB. The
FFLO state has the same symmetries as the inhomoge-
neous pion condensation state which might form in elec-
trically neutral nuclear matter at high densities [19]. It is
conceivable that the two phases are actually one, i.e., con-
tinuously connected on the �mI , mB� phase diagram.
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