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Domain Coarsening in Electroconvection
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We report on experimental measurements of the growth of regular domains evolving from an irregular
pattern in electroconvection. The late-time growth of the domains is consistent with the size of the
domains scaling as tn. We use two isotropic measurements of the domain size: the structure factor and
the domain wall length. Measurements using the structure factor are consistent with t1�5 growth. Mea-
surements using the domain wall length are consistent with t1�4 growth. One source of this discrepancy
is the fact that the distribution of local wave numbers is approximately independent of the domain size.
In addition, we measure the anisotropy of the growing domains.
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There are many situations where a system experiences
a rapid change of an external parameter, or quench, such
that the state of the system after the quench is not an equi-
librium or steady-state phase. Domains of the new equi-
librium phase form, and the subsequent growth of these
domains, or coarsening, are often characterized by a single
scale size for the domains that follows a power-law growth.
There has been a great deal of both theoretical and experi-
mental study of this process for systems where both the ini-
tial state prior to the quench and final state after the quench
are thermodynamic equilibrium states at finite temperature
[1]. We are interested in the analogous process for systems
that are driven out of equilibrium. For such systems, nei-
ther the initial nor the final state is in thermodynamic equi-
librium; however, they are steady states of the system. The
first situation will be referred to as a thermodynamic system
and the second situation as a driven system. For driven sys-
tems, studies of model equations suggest power-law scal-
ing of the late-time domain growth; however, the value of
the growth exponent depends on the measurement scheme
[2–4]. Experimentally, the coarsening of random patterns
after a ramp in the control pattern has been studied, but
growth exponents for domain size were not measured [5].
Thermodynamic systems with stripes have been studied
experimentally using block copolymers [6].

In spatially extended systems that are driven out of equi-
librium, there is generally a transition from a uniform state
to a periodic, or “stripe,” state at a critical value Rc of the
external control parameter R [7]. A quench corresponds
to a rapid change of R. For values reasonably close to
Rc, these systems are often well described by model equa-
tions that are similar to, and in some cases identical to,
the equations used to study coarsening in thermodynamic
systems [7]. However, in a driven system, there is gener-
ally no equivalent of a free energy that governs the growth
of the domains, and the periodic structure complicates the
dynamics. Therefore, the question of how the ordering pro-
ceeds in driven systems, and the differences and similari-
ties with thermodynamic systems, is one of great interest.

Simulations of potential [3,4] and nonpotential [3] forms
of the Swift-Hohenberg equation have been used to study
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quenches in driven systems [2–4]. In both cases, char-
acterization of the growth by the structure function S�k�
suggests a length scale that grows as t1�5 [3,4]. In con-
trast, the growth exponent determined from the orienta-
tional correlation function is consistent with 1�4 [3,4] for
potential dynamics and 1�2 [3] for nonpotential dynamics.
There is no explanation of the discrepancy between the
S�k� and orientational correlation function measurements;
however, the length scales determined by these measures
do not have the same immediate interpretation [4]. The
orientational correlation function results agree with experi-
ments in block copolymers [6].

We have made experimental measurements of coarsen-
ing in an anisotropic, driven system: electroconvection in
a nematic liquid crystal [8]. A nematic liquid crystal is
a fluid in which the molecules align on average along a
particular axis, referred to as the director [9], which we
take as the x axis. Because the system is anisotropic, there
are only two possible orientations of the domains. This is
fundamentally different from previous simulations and ex-
periments. One expects a different scale size parallel and
perpendicular to the preferred direction in the system. Our
measurement of these scale sizes show that not only are
the magnitudes of the length scales different but they also
coarsen with different growth exponents. We also mea-
sure isotropic properties of the domain growth and find that
they are in surprising agreement with the predictions of the
Swift-Hohenberg simulations [3,4]. Finally, our measure-
ments show that the domain size and wave number varia-
tion have different growth exponents, which explains the
discrepancy between the S�k� and orientational correlation
function measurements.

For electroconvection, the liquid crystal is placed be-
tween two glass plates with the director aligned parallel
to the plates and along a single axis. The liquid crystal is
doped with ionic impurities. An ac voltage is applied per-
pendicular to the plates. Above a critical value of the ap-
plied voltage Vc, there is a transition to a state that consists
of convection rolls with a corresponding periodic variation
of the director and charge density. We studied oblique
rolls, i.e., patterns that have a nonzero angle u between
© 2001 The American Physical Society
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the wave vector and the alignment of the undistorted di-
rector. Oblique rolls with the same wave number k but at
u (zig rolls) and 2u (zag rolls) are degenerate. The initial
transition in this system is to a pattern that consists of the
superposition of four modes: right- and left-traveling zig
and zag rolls. The interaction of these four modes leads
to irregular spatial and temporal variations of the ampli-
tudes of each of the modes [10], i.e., spatiotemporal chaos
[7,11]. For traveling rolls, a sufficiently large modulation
of the amplitude of the applied voltage at twice the intrinsic
frequency of the pattern stabilizes standing rolls [12–14].
For our system, either standing zig or standing zag rolls are
stabilized, and the stabilized pattern exhibits regular tem-
poral dynamics [15]. In our experiments, a quench corre-
sponded to a rapid change of the modulation amplitude at a
fixed value of Vrms. Since standing waves can be stabilized
both below and above Vc, two types of quenches are pos-
sible. Below Vc, the dynamics of the standing waves are
potential [16], and, above Vc, they are nonpotential [17].
Therefore, based on the results of Ref. [3], we expected
two different growth exponents. Also, below Vc, domains
of standing zig and zag rolls must first form before the
system coarsens, as the initial state is spatially uniform.
This process is illustrated in Figs. 1(a)–1(d). Above Vc,
domains of zig and zag rolls are already present after the
quench, and the coarsening proceeds from this initial dis-
tribution. This process is illustrated in Figs. 1(e)–1(h).

The details of the experimental apparatus are described
in Ref. [15]. Commercial cells [18] with a thickness of
23 mm and 1 cm2 electrodes were used. The sample
temperature was maintained at �50.0 6 0.002� ±C. The
patterns were observed from above by using a modified
shadowgraph setup [19] that effectively eliminated the
well-known nonlinear effects in the shadowgraph image
[20]. An ac voltage, V �t� � �V0 1 Vm sin�vmt�� sin�vdt�,
was applied across the sample, with vd�2p � 25 Hz.
There are two relevant dimensionless control parameters:

(h)
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FIG. 1. Processed images illustrating the domain growth for
a quench at e � 20.03 [images (a)–(d)] and for a quench at
e � 0.03 [images (e)–(h)]. The images cover an area of 1.35 3
1.35 mm, and the processing method is described in detail in the
text. The black regions are areas of zig rolls, and the white areas
are regions of zag rolls. Images (a) and (e) were taken 5 s after
the quench, and the subsequent images are all 160 s apart.
e � �V0�Vc�2 2 1 and b � Vm�Vc. Here Vc is the criti-
cal voltage for the onset of a pattern when Vm � 0. There
was a small, linear drift in Vc; therefore, before and after
each quench, Vc and vh were determined. Typical values
were Vc � 15Vrms and vh�2p � 0.5 Hz.

The system was equilibrated at b � 0 and either e �
20.03 or e � 0.03 for 5 min. For e � 20.03 �e � 0.03�,
the transition to standing waves occurs at b � 0.03 �b �
0.013� [15]. For e � 20.03, we used a jump from b � 0
to b � 0.05, and, for e � 0.03, we used a jump from
b � 0 to b � 0.04. In both cases, vm � 2vh, where vh

is the frequency of the pattern at onset, the Hopf frequency.
A third quench was done at e � 0.03 with vm � 2.1vh.
Immediately after a jump in b, a series of 128 images was
obtained. An image was taken every fifth cycle of the
modulation, or roughly once every 5 s, triggered by the
applied voltage to occur at T�4, where T is the period of
the modulation. In order to resolve the individual rolls, a
1.35 3 1.35 mm section of the sample was imaged. At
the end of a typical time series, the domain size was on
the order of our observation window; however, given the
size of the entire sample, we were not limited by finite
size effects. Unless otherwise noted, time is scaled by the
director relaxation time, which for our system is 0.2 s. For
e � 0.03, we performed 20 quenches, and for e � 20.03,
we performed 18 quenches. The domain wall length, S�k�,
the local wave number distribution, Dqx , and Dqy were
computed for each image in the time series for a given
quench. (Dqx and Dqy are defined below.) The values at
each time step were averaged over all the quenches for a
given e. These averaged values were used to compute the
growth exponents, which did not change significantly after
averaging ten quenches.

If a single scale length is sufficient to describe the
domain growth, both the total domain wall length and
the width of the power spectrum would exhibit the same
growth exponent. Because, the structure factor contains
information about the range of local wave numbers within
a domain, we measured the local wave number using the
method described in Ref. [21]. Briefly, this method in-
volves calculating the x component of k from jkxj

2 �
2�≠2

xu�x���u�x�, with a similar calculation for the y com-
ponent. Here u�x� is the image of the pattern. We used the
central 0.82 3 0.82 mm region of the image in the deter-
mination of the spread Dk of the magnitude k of the local
wave vector k. We defined Dk as the square root of the
second moment of the distribution of k about kave.

To determine the normalized domain wall length L,
the local orientation was determined from the sign of
�≠xyu�x���u�x�. Regions with a negative (positive) value
of this ratio corresponded to zig (zag) rolls and were as-
signed a gray scale of 0 (255). The resulting image was
smoothed, producing an image in which domain walls had
a value close to 128. Applying a threshold produced im-
ages in which zig regions had a value of 0, domain walls
a value of 128, and zag rolls a value of 255. The domain
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wall “length” was taken as the total number of pixels of
value 128 normalized by the total number of pixels in the
image. Images from a typical sequence, after processing,
are shown in Fig. 1. The processed images were also used
to study the anisotropy of the growth. Since the wave-
length has been factored out of the processed images, the
width of the central peak in the power spectrum S�q� of
one of these images corresponds to the length scale of the
domains. Defining Dqx �Dqy� as the second moment of
qx �qy� about q � 0 of S�q�, with qx and qy the x and y
components of q, provides a measure of the inverse of the
correlation length in the x and y directions.

The measurements based on S�k� used the same method
as described in Ref. [3]. The structure factor (the square of
the Fourier transform) was averaged over all angles. The
relevant peak in the resulting S�k� was fit to a Lorentzian
squared, and the width dk was defined as the half width
at half height. This method is an isotropic measure of the
domain growth and is used to ensure that our results are
directly comparable to Ref. [3].

Figures 2a and 2b show the results for the domain wall
length L for the e � 20.03 and e � 0.03 quenches,
respectively. Here log�L� is plotted versus log�t�. For
the quench at e � 0.03, the behavior is consistent with
power-law scaling essentially immediately after the
quench. For e � 20.03, the system is not consistent with
power-law scaling until log�t� � 2.5. This difference is
reasonable given that the domains must first form for the
quench at e � 20.03. Also, the scaling occurs in both
systems at roughly the same scale size for the domains,
log�L� � 21.2. The decay of the domain wall length is
consistent with scaling as t21�4. The solid line in Fig. 2a
is a fit over the range 2.5 , log�t� , 3.5 and has a slope
of 20.24. The solid line in Fig. 2b is a fit over the range
2.0 , log�t� , 3.2 and also has a slope of 20.24.

Figure 2b also shows the results for Dqx (open circles)
and Dqy (open squares). As is suggested by the images in
Fig. 1, the domains tend to be larger along the director (x
direction). This is confirmed by the relative magnitudes of
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FIG. 2. This shows a plot of log�L� versus log�t� (solid sym-
bols). Here L is the total length of the domain wall in the region
of study. Plot (a) is for the quench at e � 20.03, and plot (b)
is for the quench at e � 0.03. The solid lines are linear fits to
the data. The line in (a) has a slope of 20.240 6 0.004, and
the line in (b) has a slope of 20.243 6 0.003. In (b), the open
symbols are the results for Dqx (circles) and Dqy (squares).
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Dqx and Dqy . Also, the two lengths coarsen with different
exponents, where the growth exponent perpendicular to the
director is consistent with the exponent measured using
the domain wall length. A similar result holds for the
e � 20.03 quench, with the same delay in the onset of
scaling as seen in the wall length.

Figures 3a and 3b show log�dk� and log�Dk� versus
log�t� for the quenches at e � 20.03 and e � 0.03, re-
spectively. The behavior is consistent with power-law scal-
ing almost immediately for e � 0.03 and at later times for
e � 20.03. The scaling sets in for both quenches at ap-
proximately the same domain size. For both quenches, the
scaling of dk�t� is consistent with t21�5 decay, as found
in simulations [3,4]. For e � 20.03, the solid line is a
fit over the region 2.5 , log�t� , 3.5 and has a slope of
20.17. For e � 0.03, the solid line is a fit over the region
2.0 , log�t� , 3.2 and has a slope of 20.16. However,
for both cases, the variation in the local wave number Dk
is a significant fraction of dk in the possible scaling regime
and is roughly constant in time. Therefore, dk is not an
accurate measure of the growth of the domain size, but a
complicated convolution of the domain size and Dk. Ac-
counting for this effect, measurements of the coarsening
parallel and perpendicular to the director based on indi-
vidual peaks of S�k� are consistent with the anisotropy
determined from S�q� of the processed images.

Despite the different symmetries, the isotropic measure-
ments of the domain growth in electroconvection agree
well with the simulations of the Swift-Hohenberg model
[2–4] and experiments in block copolymers [6]. Un-
derstanding this agreement will require further work. In
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FIG. 3. This shows a plot of log�dk� versus log�t� using the
left-hand axis and solid symbols, and a plot of log�Dk� versus
log�t� using the right-hand axis and open symbols. Plot (a) is
for the quench at e � 20.03, and plot (b) is for the quench at
e � 0.03. The solid lines are linear fits to the solid data. The
line in (a) has a slope of 20.170 6 0.003, and the line in (b)
has a slope of 20.165 6 0.002.
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FIG. 4. This shows a plot of kave�k0 versus time. The triangles
are for the quench at e � 0.03 with vm � 2.0vh, and the circles
are for the quench at e � 0.03 with vm � 2.1vh. The lines are
a guide to the eye.

particular, the work with block copolymers attributes the
exponent of 1�4 to the dynamics of topological defects [6].
Because of the anisotropy, the relevant defect dynamics in
electroconvection are different. For example, there are no
regions where the roll orientation changes continuously,
only sharp domain walls.

One discrepancy is our observation of a growth exponent
of 1�4 for both e , 0 and e . 0. For e . 0, we expected
an exponent of 1�2 [3]. One possible explanation of the
discrepancy is the potential existence of long-time tran-
sients. An analysis of the Swift-Hohenberg equation for
patterns with k � k0 suggests a long-time transient regime
for which the growth exponent is 1�4 [2,4]. In our sys-
tem, the dispersion relation fixes the average wave num-
ber kave � k0 for vm � 2vh. To vary kave, we performed
a quench at vm � 2.1vh, for which kave � 1.07k0. The
quench was at e � 0.03 to a value of b � 0.04. Measure-
ments of L were consistent with a growth exponent of 1�4.
However, the average wave number exhibited a slow ap-
proach to a steady state (see Fig. 4), suggesting that this
growth exponent also corresponds to a transient regime.
Because there is no significant evolution of the wave num-
ber spread, we plan to study larger regions of the sample,
without resolving the individual rolls, for longer times by
exploiting optical properties of the patterns. This will al-
low for the possibility of observing a crossover to a differ-
ent growth exponent.
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