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Towards the Large N Limit of Pure N = 1 Super Yang-Mills Theory
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We find the gravity solution corresponding to a large number of Neveu-Schwarz or D5-branes wrapped
on a two sphere so that we have pure 2N° = 1 super Yang-Mills in the IR. The supergravity solution is
smooth, it shows confinement, and it breaks the U(1)z chiral symmetry in the appropriate way. When
the gravity approximation is valid the masses of glueballs are comparable to the masses of Kaluza-Klein
(KK) states on the 5-brane, but if we could quantize strings on this background it looks like we should

be able to decouple the KK states.
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Introduction.—The Anti—de Sitter/conformal field the-
ory (AdS/CFT) correspondence [1-3] gives the large N
dual description for N° = 4 super Yang-Mills. It would
be nice to find similar correspondences for “pure” (with-
out matter) Yang-Mills theories with less supersymme-
try. In this paper we consider a little string theory [4],
or Neveu-Schwarz (NS) 5-brane theory, in type-1IB string
theory. In the IR this theory reduces to six-dimensional su-
per Yang-Mills with 16 supercharges. We wrap this brane
on S? and we twist the normal bundle in such a way that
we preserve only 1/4 of the supersymmetries and we give
a mass to the four scalar fields. This theory reduces then to
pure N = 1 super Yang-Mills in the IR. We find the su-
pergravity solution using methods similar to the one in [5],
reading the solution from [6] and then lifting it up to ten
dimensions using [7,8]. When the supergravity approxi-
mation is valid the little string theory scale and the scale
of the four-dimensional theory are comparable. Neverthe-
less, the solution has all the expected qualitative features.
It has a U(1)g symmetry broken in the UV to Z,y and the
full solution breaks it further to Z, and we find N differ-
ent solutions. The theory is confining and it is magnetically
screening. It has domain walls between the different vacua.
Strings can end on the domain walls. When we try to
take the decoupling limit we find a rather precise Ramond-
Ramond (RR) o model that we should quantize in order to
find the decoupled string theory describing N° = 1 super
Yang-Mills.

NS 5-branes on S*.—Since the appropriate UV descrip-
tion of the 5-brane theory is the little string theory, or NS
5-brane, we start with an NS 5-brane in type-IIB string
theory. The geometry dual to the little string theory is
ds2 = dx} + N(dp? + dQ3), e® = e® P, where ¢
is an arbitrary constant that can be changed by shifting
p. N is the number of 5-branes. This represents a 5-brane
whose world volume is R®. Now we would like to consider
a brane whose world volume is dsé = dxf + Ne*8 dQ% ,
so that the brane is wrapped on a two sphere of radius R? =
Ne?8. The factor of N is introduced just for later conve-
nience. In order to preserve supersymmetry we should
twist the normal bundle. Since the nontrivial part of the
spin connection is in a U(1) subgroup we should choose
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how to embed the U(1) in SO4) ~ SU(2)g X SU(2);.
If we embed the spin connection in U(1)g C SUR)g C
SO(4) we preserve only four supercharges or N = 1 su-
persymmetry in four dimensions. Let us see this more
precisely from the 5-brane world volume point of view.
The spinors that generate the supersymmetries on the NS
5-brane are two six-dimensional spinors with positive chi-
rality that are in the (2,1) of SU(2)z X SU(2); and two
negative chirality spinors in the (1,2). The supersymme-
tries that are generated by the spinors transforming under
SU(2), are broken. The preserved supersymmetries have
positive chirality in six dimensions and are such that the
U(1)g charge is correlated with the chirality of the spinor
in the two directions of the sphere. We see that this leaves
us with 1/4 of the original supersymmetries of the 5-brane.
The four scalars transverse to the 5-brane transform under
the (2,2) of SU(2)g X SU(2),. This implies that, after
twisting, they become spinors on the two sphere so that
they do not have any zero modes. In the IR the only mass-
less fields are the gauge fields and the gauginos. So in the
IR we have pure N = 1 super Yang-Mills. The value of

the Yang-Mills coupling is given in terms of the volume of

i 2 S
the sphere by L= Yo o Zf,: . We are implicitly as-

suming that the’ Volum€ of the S2 is much larger than the
five-dimensional gauge coupling.

This twisted 5-brane theory seems to have a U(1)g sym-
metry which is the U(1)g that we are twisting. This is the
U(1)g symmetry of N = 1 super Yang-Mills; it acts on
the gluinos but not on the gauge fields. We will see that
this U(1)z symmetry is broken to Z,y by world sheet in-
stantons in the NS description. This twisting also preserves
the SU(2), symmetry of the 5-brane theory. But this sym-
metry does not act on the massless fields, it acts only on
the Kaluza-Klein modes which are expected to decouple
in the IR.

Finding the gravity solution.— As explained in [5] we
need to impose an appropriate boundary condition for the
geometry. In this case the boundary is at p — %. So we
impose the condition that the seven-dimensional geome-
try has a boundary which is R* X §? and we twist by
imposing appropriate boundary conditions for the seven-
dimensional gauge fields which come from the isometries
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of §3. In this case we will set A3 = cosfd ¢ for large p.
It turns out that an ansatz like this is possible only if we
allow the volume of S? to grow as p — . This is related
to the running of the coupling in four dimensions.

This solution is a particular case of the general so-
lutions analyzed in [9]. It is a “compactification” with
torsion to four dimensions (since the four-dimensional
Newton’s constant is zero in our case, it is not really a
compactification).

The boundary conditions are imposed on seven-
dimensional fields; so, it is convenient to work with
seven-dimensional gauged supergravity [10].

The form of the supersymmetry variations in seven-
dimensional string frame
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With the gauge fields A, = %O'HA,Z, F = %F“a’“, Fi, =
duA; — 9,A5 + e“bCAZAf,, where o¢ are the Pauli ma-
trices. The solution which correctly describes the UV (or
large p) in string frame is

ds’. = dx} + N[dp® + €*V)(d6> + sin®0d¢?)],
e = 22 Jp, A% = cosfd g .

We see that this ansatz respects the boundary conditions
that we want to impose at infinity.

This metric (2) is singular at p = 0 and the singular-
ity is of a bad type according to the criteria in [5,11]. To
resolve the singularity we consider the symmetries of this
solution. The metric we found still has the U(1)z symme-
try; these are U(1) charge rotations in the o directions
in this seven-dimensional description. We expect, how-
ever, that this symmetry should be broken by the choice
of vacuum in the four-dimensional gauge theory. Naively
we expect that the solution should be such that the S?
should shrink to zero. A similar effect (actually, the
opposite) was found in the topological string theory/Chern-
Simons correspondence in [12]. (This point was empha-

Sxu= Dy +iA,)e —
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We see that geometrically the resolution of the singularity
is the same as that in [13]. If we wrap branes on the 52
of a resolved conifold the twisted field theory on the brane
is precisely what we had above and the resolution is that
the S? shrinks and the S stays with finite size. In fact, our
solution is similar to the solution considered in [13] except
that we have only fractional branes and no regular branes.

The fate of the U(1) R-symmetry and the N vacua.— Let
us understand why the U(1) symmetry of the solution at

= dx} + N[dp2 + e20)(d6? + sin*0d¢?)

sized to us by C. Vafa.) In our case we cannot shrink the
52 to zero because there is a nontrivial U(1) flux through it.
Actually, this problem is completely analogous to a mag-
netic monopole in SU(2) theory vs the Dirac monopole.
So we should look for the solution analogous to the SU(2)
monopole, which will have A', A% nonvanishing. These
fields are charged under U(1)x and will thus break the U(1)
symmetry. Fortunately this solution was found in [6] for
a four-dimensional gauged supergravity; that has in string
frame the same supersymmetry transformation equations.
So we can simply read off their solution [6]:

1
A= 5[0'1a(p)d0 + o?a(p)sinfde + o3 cosfde],
_ 2%
“P) = Gomap
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We see that for large p these functions go as e?¢ ~ p,
a ~ o(e™?7) and the dilaton also has the same behavior as
in the previous U(1) solution. This implies that the solution
has the proper UV behavior. At the origin p = 0 the
metric goes as ¢ ~ p? so that the metric is nonsingular.
It is also easy to check that A is pure gauge at the origin.

Now that we have found the seven-dimensional solution
it is possible to lift it up to ten dimensions using the for-
mulas in [7,8]. In order to write the solution it is useful to
choose Euler angles on the sphere S and define the left
invariant one forms by viewing the sphere as the SU(2)
group

g = ei¢03/2€i901/2ei¢03/2’

dgg™ ",

i
— wlgd =
2

‘ “4)
wl + iw? = e Y(dh + isinfdg),
w? = di + cosfdd .
Using the uplifting formulas in [7,8] the ten-dimensional
solution is

(p)
" %Z(Wa - Aa)zl 20 = 20 287
a
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infinity is broken to Zy. In the coordinates we have
chosen this U(1) symmetry corresponds to shifting ¢ —
¢ + €, with 4 = ¢ + 4. This symmetry is broken by
world sheet instantons, which are the strings of the little
string theory wrapping an S inside S°. More precisely,
if we parametrize this S* by the coordinates 6, ¢ of (5)
we also have to set # = 6, ¢ = @, ¢ = const. It is
possible to have a world sheet with constant ¢/ thanks to the
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gauge field A3, since what appears in the metric is di +
cosfd¢p — cos@de. In other words, the coordinate ¢ is
trivially fibered over the world sheet so that we can pick
a configuration with constant (. There will be a flux of
the B field over this sphere. We can see that, for large p,

1 1 1
— B— — B=—fHd¢d0dgo
2T

27T U 277 8
= =N — ). (6)

So this flux goes as % fw B = b — Ni. This flux is the
phase that appears in the world sheet instanton calculation.
This should be identified with the phase that appears in
the field theory instanton calculation, which is the field
theory Opr angle. We see here that, as we perform a
shift in ¢, the phase changes. This implies that the U(1)
symmetry is anomalous. We see that @t is not changed
if we do rotations by ¢y — ¢ + 22" with 0 = n < 2N.
This is precisely the surviving Z,y symmetry in the UV.
This symmetry is broken to Z, by the solution (5). The
surviving Z, is just ¢y —  + 27 which does not change
the solution (5).

We should now explain why we have precisely N solu-
tions, or N vacua, for each value of fgy. First we notice
that the world sheet that we were talking about around (6)
is contractible in the full geometry. In order to see this
we can bring the sphere close to p = 0 in the geometry
(5) and then perform a gauge transformation. After this,
the world sheet is wrapped on the two sphere that col-
lapses to zero. If the geometry is to be smooth the flux
on the collapsing spherical world sheet better be a mul-
tiple of 277. If we choose a world sheet wrapping S? at
¢ = 0, the flux at the origin is the same as the flux at in-
finity which in turn is equal to gy. So the solution (5) is
a good solution only for gy = 0. To generate the other
solutions we have to rotate the gauge fields by a U(1) trans-
formation A’ = ¢/’ /24¢~1%7*/2 This does not change
the gauge fields at infinity, so it does not modify the solu-
tion in the UV. We can see that the world sheet wrapping
near p = % at the angle ¢ can be contracted to the origin
with no change in flux. But the flux of this world sheet
is @gr — Ny and that should be a multiple of 27 so we
see that we have N different solutions corresponding to
Yo = 6Nﬂ + 2777" with 0 = n < N. Thus, from the purely
metric point of view, all the solutions with arbitrary values
of ¢ are nonsingular, but once we consider the B fields
we see that only N of the solutions are nonsingular.

A domain wall separating two vacua is localized near
p ~ 0; when we cross the domain wall, we get two dif-
ferent solutions with different values of ¢y and we get a
change in the flux of B over the contractible sphere by k
units if Ay = 2Nik This implies that the gravity dual of
the domain wall should be k NS 5-branes wrapping S°.

It is also possible to see how we can make N of those
5-branes disappear. This is easier to see from the seven-
dimensional point of view. The seven-dimensional theory
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in the variables of [10] has a three form potential. The
5-branes wrapped on S? are electrically charged under this
three form potential. In the seven-dimensional Lagrangian
there is a coupling of the form iN [A3; A Tr(F A F),
where F is the field strength for the SU(2)z gauge fields.
So we see that if we have N 5-branes we can replace them
by an instanton of the SU(2) gauge field and then expand-
ing the instanton to infinite size we see that this kind of
domain wall can disappear. This effect is of course famil-
iar in the heterotic string context where we can transform
an NS 5-brane into an instanton in the gauge group [14].
In that case one 5-brane was the same as one instanton.
Towards the pure N = 1 theory.—If we intend to de-
couple the four-dimensional theory we will have to take
a limit where we go to scales much lower than the little
string mass scale. As shown in [15] we need to S dualize
the gravity solution and switch to a D5-brane description.
The S-dual metric to that in (5) is

ds, = e¢”[dxf + N(dp2 + %02
+ LS - Aa)z)} )
4 £ :
2o _ 200 SI0N2P
¢ ¢ 263(10)

and the NS H field becomes a RR H field. Everything
that we said in the previous section about world sheet
instantons translates into D-string instantons.

In this description an external quark is a fundamen-
tal string that comes in from infinity. When we have
a quark-antiquark pair and we separate them by a large
distance we see that we find a finite string tension from
the point of view of the four-dimensional theory equal

toT, = % The masses of glueballs and Kaluza-Klein
states on the spheres are, in the supergravity approxima-
tion, Mélueballs ~ M12<K ~ ﬁ Finally the tension of a
domain wall interpolating between the nth and n + 1th
vacua, which is now a D5-brane, is Ty, ~ N3/2e2¢00,
Fundamental strings can end on these domain walls [16].
The baryon vertex is a D3-brane wrapped on S3. A mag-
netic monopole source is a D3-brane wrapping the sphere
that the world sheet instantons were wrapping in the pre-
vious section and extending in the radial and time di-
rections. They are screened because, since the sphere is
contractible, each member of a monopole-antimonopole
pair can be wrapped in the three-dimensional space pa-
rametrized by p and the contractible sphere.

We see that in order to decouple the scale of the string
tension from the scale of the KK states we need e?>*N <«
1. This goes beyond the gravity approximation, which re-
quires e®P0N > 1, but it seems that we could still use
this metric to formulate a string theory. This string theory
should be such that it essentially has no excitations on §2
or S3. This is plausible since the sizes of those spheres



VOLUME 86, NUMBER 4

PHYSICAL REVIEW LETTERS

22 JANUARY 2001

are smaller than the string scale. Presumably we should
be able to replace the six-dimensional part of the geome-
try by a Liouville-like theory. In fact, since this geometry
is similar to the near conifold geometry this sounds plau-
sible. For the near conifold geometry it was suggested in
[17] that the sigma model can be replaced, for some cal-
culations, by the ¢ = 1 (super) Liouville theory. It would
be nice to understand the mapping to a Liouville-like the-
ory in the case that we have RR fields. A nice feature of
this RR sigma model is that it seems possible to choose the
light cone gauge. In AdS it is hard to choose the light cone
gauge, because in Poincaré coordinates we have a horizon.
In this case there is no horizon and the light cone theory
should be better defined. In the purely four-dimensional
theory we do not expect to have any dimensionless pa-
rameter. In our case we have a dimensionless parameter
which is ¢g; this parameter is related to the ratio of the
QCD string tension (or mass scale) and the six-dimensional
gauge coupling, or six-dimensional scale of the little string
theory. Presumably once we exchange the spheres by a
Liouville theory we would find that the string coupling is
fixed in the IR and of order 1/N.

Another related point is the precise coefficient for the
beta function. In the 5-brane theory it is natural to define
the scale as ggo in D-string metric, since that will be the
energy of a massive string mode sitting at position p. This
gives a relation between the scale in the field theory and
the position p of the form u ~ e?/2. When we look
at the definition of the four-dimensional string coupling
we see that 1/(gIN) ~ logu/Aqcep. But the coefficient
is not the correct one. It is interesting that if we go to
the five-dimensional Einstein frame metric and we define
the scale as u”> ~ gy , then we get precisely the right
B function with the right numerical coefficient [18]. We
could not find any precise reason for choosing this UV/IR
relation. In order to determine the precise relation it seems
that we should know the precise string theory and sigma
model.

In summary, this solution seems to provide a starting
point for constructing the large N limit of pure N = 1
Yang-Mills. We expect that the S° and S? would disappear
from the sigma model, leaving only the radial direction,
and probably also an angular direction, representing the

U(1) symmetry. The final picture would have the flavor of
that in [19], but it seems crucial to have RR fields in order
to generate a warp factor in string frame.
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