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Near-Field Tomography without Phase Retrieval
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We investigate the near-field inverse scattering problem with evanescent waves. An analytic solution to
this problem within the weak-scattering approximation is used to show that the usual Rayleigh limit may
be overcome even when measurements are made without phase information. Applications to a novel form
of three-dimensional microscopy with subwavelength resolution are described.
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There has been considerable recent interest in the de-
velopment of methods which extend the spatial resolution
of optical microscopy beyond the classical diffraction
limit. Researches in near-field optics have provided a pow-
erful set of experimental approaches to directly address this
problem [1]. These approaches, which include near-field
scanning optical microscopy and total internal reflection
microscopy, have been used to obtain subwavelength-
resolved maps of the optical intensity near surfaces of
effectively two-dimensional systems. However, when the
sample presents manifestly three-dimensional structure,
interpretation of the resultant images has proven to be
problematic [2]. In recent months, significant progress
towards the development of three-dimensional near-field
imaging has been made on two fronts. Nanotomography,
a destructive method in which a sample is successively
eroded and then imaged layer by layer with a scanning
probe microscope was reported in Ref. [3]. A nondestruc-
tive approach has also been suggested and is based upon
the solution to the linearized near-field inverse scattering
problem for three-dimensional inhomogeneous media [4].
For this latter method, the input data for the image recon-
struction algorithm depend on the amplitude and phase of
the scattered field. Measurements of the optical phase,
particularly in the near field, are notoriously difficult since
detectors generally record only intensities, necessitating
the use of a holographic measurement scheme.

In this Letter we present the theoretical foundations for
three-dimensional near-field microscopy which achieves
subwavelength resolution without retrieval of the optical
phase. The proposed method, to which we refer as near-
field tomography, obtains from an analysis of the inverse
scattering problem in which the incident field consists of
a coherent superposition of evanescent waves. The super-
oscillatory properties of such waves may be used to encode
structure on subwavelength scales. Our results are remark-
able in three regards. First, we circumvent the near-field
phase problem by employing measurements of the power
extinguished from the probe fields. Second, the fields
on which the power measurements are performed may be
monitored far from the scatterer and thus subwavelength
resolution is obtained from far zone measurements. Third,
by developing an analytic approach to the inverse problem
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in the form of an explicit inversion formula, we produce an
image reconstruction algorithm which is strikingly robust
in the presence of noise. Computer simulations are used
to illustrate our approach in model systems.

We begin by considering an experiment in which a
monochromatic field is incident on a dielectric medium
with susceptibility h�r�. For simplicity, we ignore the ef-
fects of polarization and consider the case of a scalar field
U�r� which obeys the reduced wave equation

=2U�r� 1 k2
0U�r� � 24pk2

0h�r�U�r� , (1)

where k0 is the free space wave number. The incident
field will be taken to consist of a superposition of two
evanescent waves (see Fig. 1)

U�i��r� � a1eik1?r 1 a2eik2?r , (2)

with amplitudes a1 and a2. Here the complex wave vectors
k1 and k2 are of the form kj � ���qj , kz�qj���� with trans-
verse part qj and kz�qj� � i�q2

j 2 k2
0�1�2 for j � 1, 2. If

the evanescent waves are generated by a prism of refractive
index n then k0 # jqjj # nk0. By monitoring the change
in the power content of the totally reflected waves due to
the presence of the scatterer, we may obtain the power lost
by the probe fields, the extinguished power. In a sense, the
interference of these waves leads to a form of holography
carried out within the scattering medium. The power ex-
tinguished from the incident beams may be obtained from
a generalization of the optical theorem [5] and is given by
the expression

FIG. 1. Illustrating the experiment. Beams (a) and (b) gen-
erate evanescent waves which are incident on the scatter. The
extinguished power is then measured at the output via difference
measurements with and without the scatterer present.
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(3)

where A�k1, k2� is the scattering amplitude associated with
the scattering of a plane wave with wave vector k1 into a
plane wave with wave vector k2. It will prove useful to
extract the cross terms from (3), that is to gain informa-
tion about the scattering amplitude for nonzero momen-
tum transfer. This can be accomplished for any set of
k1 and k2 through four measurements of the extinguished
power where the relative phases are varied between mea-
surements. To this end we define the following data func-
tion [5,6]:

D�k1, k2� �
k0

8pa�
1a2

�P�a1, ia2� 2 P�a1, 2ia2�

1 i�P�a1, a2� 2 P�a1, 2a2��� .
(4)
It may be seen from (3) that the data function is related to
the scattering amplitude by

D�k1, k2� � A�k�
1, k2� 2 A��k�

2, k1� . (5)

The data function uniquely determines h�r� as may be seen
from the analytic properties of the scattering amplitude. It
should be stressed that this result is independent of any
approximations beyond the use of a scalar model.

We now address the inverse problem. We restrict our
attention to the weak-scattering approximation. Accord-
ingly, the scattering amplitude may be calculated pertur-
batively to lowest order in h with the result

A�k1, k2� � k2
0

Z
d3r e2i�k12k2�?rh�r� . (6)

Noting that the wave vectors k1 and k2 may be specified
by their transverse parts alone, it may be found that
D�q1, q2� � 2ik2
0

Z
d3r exp�2i�q1 2 q2� ? r 2 i�k�

z �q1� 2 kz�q2��z�a�r� , (7)
where r � �r, z� with r the transverse spatial coordinate,
a�r� � Imh�r� is the absorptive part of the susceptibility,
and the dependence of D on q1 and q2 has been made
explicit.

We assume that D�q1, q2� is known for �q1, q2� in
the data set Q and introduce a function x�q1, q2�
which is unity if �q1, q2� [ Q and is zero otherwise.
For convenience, we introduce the function F�q, Q� �
D�q, Q 1 q�x�q, Q 1 q��2ik2

0 where q, Q range over
all space. Making use of these definitions, we arrive at
the system of equations

F�q, Q� �
Z L

0
dz K�q, z; Q�ã�Q, z� , (8)

where

K�q, z; Q� � exp�i�kz�Q 1 q� 2 k�
z �q��z�x�q, Q 1 q� ,

(9)
ã�Q, z� �
R

d2r exp�iQ ? r�a�r�, and L is the range of
a�r� in the z direction. For fixed Q, Eq. (8) defines a one-
dimensional integral equation for ã�Q, z� whose pseudo-
inverse solution has the form

ã�Q, z� �
Z

d2q d2q0 K��q, z; Q�

3 	qjM21�Q� jq0
F�q0, Q� , (10)

where the matrix element 	qjM21�Q� jq0
 is obtained from
the overlap integral

	qjM�Q� jq0
 �
Z L

0
dz K�q, z; Q�K��q0, z; Q� . (11)

It may be verified by direct substitution that (10) satisfies
(8). Finally, we apply the inverse Fourier transform in
the transverse direction and note that we may restrict the
integrations over Q to jQj # 2nk0 and q, q0 to Q1 with
Q1 � �q1:�q1, q2� [ Q� to arrive at our main result:
a�r� �
1

2i�2p�2k2
0

Z
jQj#2nk0

d2Q e2iQ?r
Z
Q13Q1

d2q d2q0 K��q, z; Q� 	qjM21�Q� jq0
x�q0, Q 1 q0�D�q0, Q 1 q0�

(12)
which is the required inversion formula.
The solution we have constructed to the inverse prob-

lem is the unique minimum L2 norm solution of (7). This
statement follows from the fact that (12) may be inter-
preted as the singular value decomposition (SVD) [7] of
the pseudoinverse solution to (7). A detailed discussion
of the analytic SVD of the linear integral operator de-
fined by (7) is beyond the scope of this Letter and will be
presented elsewhere. Nevertheless, it is important to ap-
preciate that the SVD provides a natural means of regu-
larization of the inverse problem which sets the resolution
of the reconstructed image to be commensurate with the
available data. In particular, we regularize M21�Q� by
setting

	qjM21�Q� jq0
 �
X

�

R�s��Q��
	qjc��Q�
 	c��Q�j q0


s
2
��Q�

,

(13)
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where the jc��Q�
 are eigenfunctions of M�Q� with eigen-
values s

2
��Q�. Here R�s� filters the small eigenvalues,

the simplest choice being a cutoff whereby R is set to
zero below some fixed threshold. Alternatively, Tikhonov
regularization, Wiener filtering, or other methods may be
employed.

To demonstrate the feasibility of the inversion, we have
numerically simulated the reconstruction of a�r� for a col-
lection of spherical scatterers. The forward data were cal-
culated by considering the scattering of evanescent waves
from a homogeneous sphere including multiple scattering
terms by means of a partial wave expansion. We consider
a sphere of radius a centered at the point �0, 0, a� with re-
fractive index n, n being related to the scattering potential
by the expression n2 � 1 1 4ph. It may be found that

A�k1, k2� � eiaẑ?�k12k2�
X̀
��0

�2� 1 1�A�P��k̂1 ? k̂2� ,

(14)

where A� are the usual partial wave expansion coefficients
[8] and P� are the Legendre polynomials. Since we con-
sider evanescent waves, the argument of the Legendre
polynomials in (14) may exceed unity. The series may
nonetheless be shown to be convergent due to the rapid
decay of the A� with increasing �.

The forward data were obtained for a collection of six
spheres of radius l�20 and index of refraction n � 1.1 1

0.2i, distributed on three planes as shown in Fig. 2. All
scatterers are present simultaneously in the forward simu-
lation with intersphere scattering neglected. The set Q
of transverse wave vectors was taken to consist of all
wave vectors q1,2 corresponding to evanescent waves at-
tainable with a prism of index n such that jq1xj # nk0,
jq1yj # k0�2, q2 � Q 1 q1, and the physical requirement
that k0 # jq1,2j # nk0 is always imposed. When Q con-
sists of discrete points, the integrals in (12) become sums.
5876
More specifically, integration over q, q0 was performed on
a rectangular grid with lattice spacing Dq and over Q on
a rectangular grid with lattice spacing DQ. Regularization
was achieved by setting R�s� � Q�s 2 sc� where the
cutoff sc � e max�s��Q�� with scale factor e.

In Fig. 2 we present simulations of experiments done
with two different prisms, one with index of refraction
n � 5, the other with n � 10 (as might be encountered
in the infrared). We show the reconstructions obtained
at depths of 0.05l, and 0.25l which correspond to the
two separate equatorial planes of the original distribution
of scatterers. The relevant parameters were taken to be
Dq � k0�2, and DQ � k0�4 for the n � 10 prism. For
the n � 5 case we took Dq � k0�4, and DQ � k0�8.
The regularization parameter e was taken to be e � 1023

for the z � 0.05l layer and e � 1022 for the z � 0.25l

layer. Complex Gaussian noise of zero mean was added to
the data function at various levels as indicated.

In principle the inversion formula (12) provides an ex-
act reconstruction of the scatterer when the data function
is known for all possible transverse wave vectors. In prac-
tice, however, the resolution of the reconstruction is con-
trolled by several factors including the index of the prism,
the depth of the slice, and choice of regularization parame-
ters. These effects may be understood by observing that the
resolution is governed by the low pass filtering �jQj #

2nk0� that is inherent in the transverse Fourier integral in
(12) and additionally by the exponential decay of high-
frequency components of the scattered field with increas-
ing degree of evanescence. In general, with a prism of
index n the transverse resolution will be on the order of
l�2n at a depth of l�2n after which it falls off linearly.
This is seen in the n � 10 simulations where the spheres
whose edges are separated by l�20 may be resolved in
the slice at a depth of l�20. However, the spheres in the
next layer at l�4 with the same spacing are not resolvable,
FIG. 2 (color). The simulated tomographs. The field of view is l 3 l in each image. The scatterers used in the forward simulation
are shown in the column labeled “Model.” The percentages given across the top indicate the noise level compared to the signal
level. The indices listed across the bottom indicate the index of refraction of the prism needed to generate the waves used in the
simulations. Each reconstruction was normalized by its maximum value and imaged using the linear color scale shown to the right.
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but the groups of spheres which are spaced at l�4 may
be resolved. For the n � 5 case the scatterers in the top
layer are not well resolved, but the scatterers in the deeper
layer are well resolved. That in these simulations the lower
index prism seems to produce better images of the deeper
layer may be attributed to the fact that we make use of a
fixed number of wave vectors, so that the reconstructions
involving the lower index prism take into account a greater
number of lower spatial frequency waves which probe the
deeper layers.

It may be observed that the reconstruction algorithm
is very robust in the presence of noise. This may be at-
tributed to the fact that the inverse problem is overdeter-
mined. More specifically, the parametrization of the data
function by �q1, q2� is four dimensional while the absorp-
tion is parametrized by the three-dimensional position vec-
tor r. When the data are known for a finite set of discrete
points this underlying degeneracy manifests itself as a dis-
crepancy between the number of singular functions in the
regularized inversion kernel and the number of data points,
the latter being greater than the former. This has the ef-
fect of performing a weighted average over groups of data
points, each group being associated with a particular singu-
lar function. Since the data function is produced by taking
differences between power extinction measurements, it is
expected that regardless of other statistical properties of
the noise it will be of zero mean. Thus the averaging pro-
cess enhances the signal.

In conclusion, we have shown that it is possible to re-
construct the three-dimensional subwavelength structure
of a scattering medium from power extinction measure-
ments. Several comments on our results are necessary.
First, the improved resolution is made possible by the use
of evanescent waves as illumination so that we may di-
rectly probe the high spatial frequency structure of the scat-
terer. Second, we have obtained a solution to the linearized
near-field inverse scattering problem without measurement
of the optical phase. Third, our approach provides an ana-
lytic solution rather than a numerical solution to the inverse
problem. Finally, our results are of general physical inter-
est since they are applicable to the inverse scattering prob-
lem with any scalar wave using data derived from power
extinction measurements.
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