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Quantitative In-Line Phase-Contrast Imaging with Multienergy X Rays
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We present a new method for quantitative nondestructive characterization of objects by x-ray phase-
contrast imaging. Spatial distributions of the projected values of the complex refractive index in the
sample are reconstructed by processing near-field images collected at a fixed sample-to-detector distance
using a polychromatic incident beam and an energy-sensitive area detector, such as a CCD used in the
photon-counting spectroscopy mode. The method has the potential advantages of decreased radiation
dose and increased accuracy compared to conventional techniques of x-ray imaging.
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In x-ray imaging, as in any other imaging technique
where wave effects are not negligible, two basic mecha-
nisms of contrast formation can be distinguished, namely,
differential absorption and phase shifts. Several modes of
x-ray phase-contrast imaging have been implemented over
the years, including the holographic [1] and Zernike [2]
soft x-ray microscopes, x-ray interferometry [3], single-
crystal-analyzer techniques [4,5], and more recently the
in-line method [6–8]. The last method, which is close
in principle to Gabor’s in-line holography [9], serves as a
base for the development in the present paper.

According to the properties of Fresnel diffraction, free-
space propagation of a beam transforms phase variations
in the object plane into detectable intensity variations in
the image plane, provided the latter is located at a suf-
ficient distance from the former. Therefore, the in-line
method does not require any optical elements to obtain
phase contrast. It has been demonstrated that the only
mandatory prerequisite for this method is a high degree of
transverse spatial coherence of the incident beam, which
can be achieved either with a quasiplane wave from a
synchrotron source [6] or with a quasispherical wave from
a microfocus laboratory source [7]. The requirements
on the chromatic coherence of the beam are much less
stringent [10].

It has been shown that the near-field contrast from
a nonabsorbing object is proportional to the Laplacian
of the phase distribution in the object plane [11–14,7].
Therefore, the projections of the real part of the refractive
index of a pure phase sample can be recovered by inverse-
Laplace filtering of a single near-field image [14]. How-
ever, most objects encountered in the practice of x-ray
in-line imaging combine some degree of absorption
contrast with phase contrast. In such cases, more than one
image may be necessary for the unambiguous determi-
nation of the complex index of refraction. In the present
paper, we demonstrate a new method for the determination
of the complex refractive index in a sample using multiple
in-line x-ray images at different energies. We first develop
the theoretical framework of the new technique, then test
it on numerically simulated data, and, finally, apply it to
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images collected at several energies using a purpose-built
laboratory x-ray ultramicroscope with energy-sensitive
detector and having submicron spatial resolution.

Let us first consider a plane incident wave with wave-
length l and unit intensity propagating along the optic
axis z. The distributions of intensity I and phase w in
the plane orthogonal to the optic axis and located imme-
diately after a thin weakly refracting object can be ex-
pressed in terms of line integrals of the complex index of
refraction, n � n�r� � 1 2 d 2 ib, jn 2 1j ø 1, r �
�r�, z�, I�r�, 0, l� � exp�2M�r�, 0, l��,

M�r�, 0, l� � �4p�l�
Z 0

2`
b�r�, z0, l� dz0, (1)

w�r�, 0, l� � 2�2p�l�
Z 0

2`
d�r�, z0, l� dz0. (2)

The dependencies of the real and imaginary parts of the
absorption coefficient on the wavelength of the incident
radiation in the absence of absorption edges between l0
and l, for any elements present in the sample, are well
known [15]:

b�l� � �l�l0�4b�l0�, d�l� � �l�l0�2d�l0� . (3)

The propagation of the beam from the object plane
z � 0 to the image plane z � R can be described mathe-
matically by the Fresnel integral. In the near field, i.e., in
the region where the Fresnel number is large, the square
modulus of the Fresnel integral can be approximated using
the transport of intensity equation (TIE) [11,12,16]:

�Rl�2p� �2=2w�r�, 0, l� 2

=w�r�, 0, l� ? = lnI�r�, 0, l�� �

I�r�, R, l��I�r�, 0, l� 2 1 . (4)

Note that in the region of validity of Eq. (4) (in the
near field), intensity distributions in the object and image
planes cannot differ much, i.e., jI�r�, R, l��I�r�, 0, l� 2

1j ø 1. Therefore the right-hand side (rhs) of Eq. (4)
can be written as ln�I�r�, R, l�� 2 ln�I�r�, 0, l��. Taking
Eqs. (1)–(3) into account, we can now rewrite Eq. (4) as
© 2001 The American Physical Society 5827
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2s3M�r�, 0, l0� 1 gs�2=2w� �r�, 0, l0� 1

gs4=w�r�, 0, l0� ? =M�r�, 0, l0� �

ln�I�r�, R, l�� , (5)

where s � l�l0 and g � Rl��2p�. If images at three
different wavelengths li , i � 0, 1, and 2, are available, we
can consider the following system of three linear equations:

A

0
B@ M�r�, 0, l0�

2=2w�r�, 0, l0�
=M ? =w�r�, 0, l0�

1
CA �

0
B@ F0

F1
F2

1
CA,

where A �

0
B@ 21 g0 g0

2s
3
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4
1g1

2s
3
2 s2g2 s

4
2g2

1
CA ,

(6)

and the rhs functions Fi � ln�I�r�, R, li�� can be evalu-
ated from the three measured intensity distributions in the
image plane z � R at the three selected wavelengths. It
can be easily verified that the determinant of the matrix A
cannot be equal to zero as long as all three wavelengths
li , i � 0, 1, and 2, are different. Therefore, the projected
attenuation M and the Laplacian of the phase distribution
can be obtained as solutions to the linear system (6). The
phase distribution can be retrieved by solving the Pois-
son equation, 2=2w�r�, 0, l0� �

P
A21

1j Fj , where A21
1j ,

j � 0, 1, and 2, are the elements of the central row of the
matrix inverse to A. Any uniform boundary conditions
can be used if the sample is fully contained in the field
of view, although the flat-field (no sample) image may be
required to correct for effects of nonuniform illumination.
A number of different numerical techniques based, e.g.,
on the fast Fourier transform or Mutigrid methods can be
used for numerical solution of the Poisson equation for the
phase [16]. The projected values of the complex refractive
index n � 1 2 d 2 ib can then be trivially found using
Eqs. (1) and (2).

If the third term in the lhs of Eq. (5) is much smaller
than the first two and can be neglected, then the system
Eq. (6) can be reduced to only two equations with respect
to the unknowns M�r�, 0, l0� and 2=2w�r�, 0, l0�. The
solution to this reduced 2 3 2 linear system is given by

M�r�, 0, l0� � �l0�Dl� �F0 2 s22F1� , (7)

2=2w�r�, 0, l0� � 2p��RDl� �sF0 2 s22F1� , (8)

where Dl � l1 2 l0 and s � s1 � l1�l0. Therefore,
in this case intensity and phase in the object plane (and,
hence, the projections of the complex refractive index)
can be found from only two images Fi � ln�I�r�, R, li��,
i � 0, 1, collected at two different wavelengths l0 and l1.

Generalizations of the above results to the case of
a spherical and/or partially coherent incident wave are
straightforward [16–19].

To test the above theory, we performed the following
numerical experiment. First, we chose three x-ray wave-
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lengths, l0 � 1 Å, l1 � 1.2 Å, and l2 � 0.8 Å. We
then simulated distributions of intensity and phase in the
object plane at l � l0 as shown in Figs. 1(a) and 1(b).
The 2D numerical grid had 128 3 128 pixels and was as-
signed a physical size of �200 3 200� mm. Maximum ab-
sorption at l0 was 5%, and maximum absolute phase shift
was 0.91 rad. We applied the scaling equations (3) to ob-
tain the data at the other two wavelengths.

We then calculated the intensity distributions in the
image plane R � 2 cm at each of the wavelengths by
computing Kirchhoff integrals. The image at l � l0 is
presented in Fig. 1(c), showing both amplitude and phase
contrast. The images at l � l1,2 visually looked very
similar. Applying the above theory [Eq. (6)] to the com-
puted images, and solving the Poisson equation for the
phase, we retrieved the intensity and phase distributions
in the object plane. The results are shown in Figs. 1(d)
and 1(e). The relative rms errors in the reconstructed in-
tensity and phase both were less than 1%. As is evident
in Fig. 1(f), these errors were concentrated primarily in
high spatial frequency components, for which the TIE ap-
proximation to the Kirchhoff integrals is not sufficiently
accurate [16].

The essentials of our experimental setup for this work
are in Fig. 2, with further details available in [20].

The x-ray phase ultramicroscope used to collect the
present images is based on a modified Hitachi S-450LB
scanning electron microscope. A point source of x rays
was generated by focusing the 25 keV electron beam into
a �0.25 mm spot on a tilted target consisting of a 0.25 mm
thick tantalum foil. This generated an x-ray spectrum
which includes the characteristic Ta Ma lines ��1.7 keV�
along with a broad bremsstrahlung spectrum at higher en-
ergies. The sample and charge-coupled device (CCD) de-
tector were mounted in the horizontal plane level with the

FIG. 1. Simulated distributions of (a) intensity and (b) phase in
the object plane; (c) image at l0 � 1 Å and R � 2 cm; recon-
structed distributions of (d) intensity and (e) phase; (f) difference
between the original and reconstructed intensity distributions.
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FIG. 2. Schematic diagram of experimental setup.

target and at right angles to the vertical electron beam. All
images were collected using a 512 3 512 Loral CCD array
with 15 mm pixels. This was used in direct detection mode
(i.e., without a phosphor screen) and was Peltier cooled to
232 K in order to minimize dark current generation during
long exposures.

In order to produce energy-resolved images, data were
collected as a series of short exposures. In each expo-
sure, single photon events can be identified where a bright
pixel is surrounded by dark pixels. The photon energy
of such events is determined by the size of the signal in
the bright pixel. Energy-resolved images can be produced
by selecting only events with a certain energy range when
adding the data from the different exposures to form an im-
age. In this way, a series of images with different energy
ranges can be extracted, and since the data at all energies
is collected simultaneously all the images will be perfectly
aligned with one another. This avoids registry problems
that can occur when collecting a series of images at differ-
ent positions along the optic axis [16].

Images of a set of approximately 9 mm diameter latex
spheres at three different energies (wavelengths) [E0 �
3.3 keV �l0 � 3.8 Å�, E1 � 1.7 keV �l1 � 7.3 Å�, and
E2 � 5.0 keV �l2 � 2.5 Å�] were collected in the above
fashion. These images are presented in Fig. 3. The source-
to-sample distance was R1 � 1.2 mm and the sample-to-
detector distance was R2 � 181.8 mm. Therefore, the
magnification was equal to 153, the effective propagation
distance was R � R1R2��R1 1 R2� � 1.19 mm, and the
effective pixel size at the object plane was 0.098 mm. The
spatial resolution achieved in the experiment was primarily
limited by the source size of �0.25 mm. The maximum
theoretical phase shift in 9 mm of latex at E0 � 3.3 keV
was 2wtheor

max � 3.31 rad, and the maximum attenuation
was Mtheor

max � 0.056. A dark vertical line visible in the
right side of each image in Fig. 3 is a defect of the CCD.

We first used Eq. (6) to retrieve the amplitude and
the phase in the object plane from 450 3 450 pixel
subimages of Figs. 3(a)–3(c). The corresponding re-
constructed phase distribution is shown in Fig. 4(a).
FIG. 3. Experimental images at (a) E � 3.3 keV, (b) 1.7 keV,
and (c) 5.0 keV.

Obviously, the result contains a large amount of low-
frequency noise, which is typical for the solutions of a
Poisson equation with a noisy rhs function [14]. Closer
analysis showed that the noisiness of the result is mainly
due to the very low signal-to-noise ratio in the image
collected at the highest energy, where attenuation and
phase shifts were the smallest [see Fig. 3(c)]. There-
fore, we decided to exclude that image from the set of
experimental data and use the approximation assumed
in Eqs. (7) and (8). This approximation was applicable
to our experimental data as the theoretically estimated
attenuation was small, Mtheor

max � 0.056, and it was not
changing very rapidly. The distributions of the phase w

and attenuation M in the object plane reconstructed from
images 3(a) and 3(b) using Eqs. (7) and (8) are presented
in Figs. 4(b) and 4(c).

The maximum phase shift averaged over a 20 3 20
pixel area in the middle of single spheres marked by
numbers 1–4 in Fig. 4(b) are presented in the first row
of Table I. The corresponding value obtained from an
ideal latex sphere of 9 mm diameter at E0 � 3.3 keV
was �2wtheor

max 	 � 3.25 rad; therefore, the reconstructed
values are in a very good agreement with the theoreti-
cal prediction. The sphere No. 5 in Fig. 4(b), which
looked noticeably larger than the others, had a value of
�2w

exp
max	 � 4.50, which corresponded to the diameter

of 12.5 mm. The estimation of the diameter of this
sphere obtained from Fig. 3(b) was equal to 118 pixels or
11.6 mm. The region No. 6 gave �2w

exp
max	 � 7.27 rad,

and the region No. 7 gave �2w
exp
max	 � 5.64, which would

appear to indicate that there are spheres stacked on top
of each other in these locations. The maximum values
of attenuation averaged over a 20 3 20 pixel area in the

FIG. 4. Reconstructions from 450 3 450 pixel subimages:
(a) phase from Figs. 3(a)–3(c); (b) phase from Figs. 3(a) and
3(b); (c) attenuation �M� from Figs. 3(a) and 3(b).
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TABLE I. Theoretical and experimental values of x-ray �E0 �
3.3 keV� phase shift and attenuation in 9 mm latex spheres.

Theory Sphere 1 Sphere 2 Sphere 3 Sphere 4

�2wmax	 3.25 3.20 3.53 3.57 3.12
�Mmax	 0.055 0.061 0.070 0.053 0.056

middle of single spheres in Fig. 4(c) corresponding to
spheres No. 1–4 in Fig. 4(b) are presented in the second
row of Table I. These values are in good agreement with
the theoretically predicted value of �Mtheor

max 	 � 0.055.
The fact that we were able to obtain quantitatively accu-

rate values of the projected refractive index of the sample
from quite noisy experimental images indicates a good
stability of the method. This can be explained by the
mathematical stability of the operations involved in the re-
construction, i.e., the inversion of a very small (3 3 3 or
2 3 2) matrix combined with the inverse-Laplace filtering
in the case of phase.

In conclusion, we have presented a theoretical and
experimental demonstration of a new method for rapid
quantitative nondestructive analysis of thick optically
opaque samples. The proposed method is relatively
simple experimentally. The required images at different
x-ray energies can be obtained either by tuning the energy
of incident x rays with a suitable source and monochro-
mator or, preferably, by using a polychromatic incident
beam and energy-sensitive x-ray area detector. We believe
that this new method will be useful in material sciences,
biology, and, particularly, in medical applications, where it
may lead to a decrease in radiation dose to the specimens,
as well as improved speed and accuracy of the experiment
compared to conventional x-ray imaging techniques.
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of X-Ray Technologies Proprietary Ltd. (XRT) for this
research.
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