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Temporal Correlations and Neural Spike Train Entropy
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Sampling considerations limit the experimental conditions under which information theoretic analyses
of neurophysiological data yield reliable results. We develop a procedure for computing the full temporal
entropy and information of ensembles of neural spike trains, which performs reliably for limited samples
of data. This approach also yields insight to the role of correlations between spikes in temporal coding
mechanisms. The method, when applied to recordings from complex cells of the monkey primary visual
cortex, results in lower rms error information estimates in comparison to a “brute force” approach.
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Cells in the central nervous system communicate by
means of stereotypical electrical pulses called action po-
tentials, or spikes [1]. The Shannon information content
of neural spike trains is fully described by the sequence of
times of spike emission. In principle, the pattern of spike
times provides a large capacity for conveying information
beyond that due to the code commonly assumed by physi-
ologists, the number of spikes fired [2]. Reliable quan-
tification of this spike timing information is made difficult
by undersampling problems that scale with the number of
possible spike patterns, and thus up to exponentially with
the precision of spike observation (see Fig. 1). While ad-
vances have been made in experimental preparations where
extensive sampling may be undertaken [3–6], our under-
standing of the temporal information properties of nerve
cells from less accessible preparations such as the mam-
malian cerebral cortex is limited.

Any direct estimate of the complete spike train infor-
mation is limited by sampling considerations to relatively
small word lengths, and therefore to the analysis of short
time windows of data. However, it is possible to take ad-
vantage of this restriction itself to obtain estimators which
have better sampling properties than a “brute force” ap-
proach. In this Letter we present an approach based upon
a Taylor series expansion of the entropy, to second order
in the time window of observation [7]. The analytical ex-
pression so derived allows the ensemble spike train entropy
to be computed from limited data samples, and relates
the entropy and information to the instantaneous proba-
bility of spike occurrence and the temporal correlations
between spikes. Comparison with other procedures such
as the brute force approach [4,9] indicates that our ana-
lytical expression gives substantially better performance
for data sizes of the order typically obtained from mam-
malian neurophysiology experiments, as well as providing
insight into potential coding mechanisms.

Consider a time period of duration T , associated with
a dynamic or static sensory stimulus, during which the
activity of C cells is observed. The neuronal population
0031-9007�01�86(25)�5823(4)$15.00
response to the stimulus is described by the collection of
spike arrival times �ta

i �, ta
i being the time of the ith spike

emitted by the ath neuron. The spike time is observed with
finite precision Dt, and this bin width is used to digitize the
spike train (Fig. 1). For a given discretization (temporal
precision), the entropy of the spike train is a well defined
quantity. The total entropy of the spike train ensemble is

H��ta
i �� � 2

X
�ta

i �
P��ta

i �� log2 P��ta
i �� , (1)

where the summation is over all possible spike times within
T and over all possible total spike counts from the popu-
lation of cells. This entropy quantifies the total variabil-
ity of the spike train. Each different stimulus history
(time course of characteristics within T ) is denoted as
s. The noise entropy, which quantifies the variability to
repeated presentations of the same stimulus, is Hnoise �
�H��ta

i � j s��s, where the angular brackets indicate the aver-
age over different stimuli, �A�s��s �

P
s[S P�s�A�s�. The

mutual information that the responses convey about which
stimulus history invoked the spike train is the difference
between these two quantities.
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FIG. 1. Digitizing spike trains into binary “words” with a
given precision. A common experimental structure has N re-
peats for each separate stimulus (one stimulus shown). The
spike emission times for each such “trial” are binned with reso-
lution Dt, as shown for the last raster. There are 2L possible
words when examining data from a time window of duration T .
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These entropies may be expanded as a Taylor series in
the time window of measurement,

H � THt 1
T2

2
Htt 1 O�T3� . (2)

To compute the Taylor expansion, we made the follow-
ing assumptions: (i) The time window is short enough, or
the firing rate low enough, that there are few spikes per
stimulus presentation. (ii) The entropy is analytic in T .
(iii) Different trials are random realizations of the same
process. We will use the bar notation for the average over
trials at fixed stimulus, such that if ra�t; s� �

P
i dt,ta

i �s�,
the time-dependent instantaneous firing rate ra�t; s� is its
average over experimental trials. (iv) Spikes are not locked
to each other with infinite precision; in other words, the
conditional probability of a spike occurring at time t

b
j

given occurrence of a particular spike pattern �ta
i � scales

for small Dt proportionally to Dt plus higher order terms,
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with no O�1� terms: P�tb
j j�ta

i �; s� ~ Dt 1 · · · for each
possible spike pattern �ta

i �. The validity of these assump-
tions has been examined elsewhere [10].

The probability of observing a pattern with k spikes can
be expressed as a product of k probabilities of each of
the spikes given the presence of others. Thus from (iv),
the probability of this pattern is proportional to Dtk , and
the expansion is essentially in the total number of spikes
emitted. This also implies that only the conditional proba-
bilities between spike pairs are necessary for the second
order expansion. Parametrizing the conditional probability
between two spikes by the scaled correlation gab�ta

i , tb
j ; s�

[11], we can now write down the probabilities required by
Eq. (1).

Denoting the no spikes event as 0 and the joint occur-
rence of a spike from cell a at time ta

1 and a spike from cell
b at time tb

2 as ta
1 tb

2 , the conditional response probabilities
are, to second order,
P�0 j s� � 1 2

CX
a�1

X
ta
1

ra�ta
1 ; s�Dt 1

1
2

X
ab

X
ta
1

X
tb
2

ra�ta
1 ; s�rb�tb

2 ; s� 	1 1 gab�ta
1 , tb

2 ; s�
Dt2,

P�ta
1 j s� � ra�ta

1 ; s�Dt 2 ra�ta
1 ; s�

CX
b�1

X
tb
2

rb�tb
2 ; s� 	1 1 gab�ta

1 , tb
2 ; s�
Dt2, a � 1, . . . , C, (3)

P�ta
1 tb

2 j s� � ra�ta
1 ; s�rb�tb

2 ; s� 	1 1 gab�ta
1 , tb

2 ; s�
Dt2, a � 1, . . . , C, b � 1, . . . , C .

The unconditional response probabilities are simply p��ta
i �� � �p��ta

i � j s��s. Inserting p��ta
i �� into Eq. (1) and keeping

only leading order terms yields for the first order total entropy

THt �
1

ln2

X
a

X
ta
1

�ra�ta
1 ; s�Dt�s 2

X
a

X
ta
1

�ra�ta
1 ; s�Dt�s log2�ra�ta

1 ; s�Dt�s . (4)

Inserting p��ta
i � j s� instead yields a similar expression for the first order noise entropy THnoise

t , except with a single stimu-
lus average �?�s around the entire second term. Continuing the expansion, and noting that a factor of 1�2 is introduced to
prevent overcounting of equivalent permutations, the additional terms up to second order are
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(5)
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+
s

.

(6)

The difference between the total and noise entropies gives
the expression for the mutual information detailed in [10].

It has recently been found that correlations, even if in-
dependent of the stimulus identity, can increase the infor-
mation present in a neural population [8,12]. This applies
both to cross correlations between the spike trains from
different neurons and to autocorrelations in the spike train
from a single neuron [10]. The equations derived above
add something to the explanation of this phenomenon pro-
vided in [8]. Observe that the second order total entropy
can be rewritten in a form which shows that it depends
only upon the grand mean firing rates across stimuli, and
upon the correlation coefficient of the whole spike train,
G�ta

i , tb
j � [defined across all trials rather than those with a

given stimulus as for g�ta
i , tb

j ; s�]. Thus,

T2

2
Htt �

Dt2

2 ln2

X
ab

X
ta
1

X
tb
2

�ra�ta
1 ; s��s�rb�tb

2 ; s��s

3 �Gab�ta
i , tb

j � 2 	1 1 Gab�ta
i , tb

j �

3 ln	1 1 Gab�ta

i , tb
j �
� . (7)

It follows that the second order entropy is maximal when
G � 0, and nonzero overall correlations in the spike trains
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(indicating statistical dependence) always decrease the to-
tal response entropy. g�s� acts on the noise entropy as G

does upon the total entropy — it can only decrease the con-
ditional entropy. The effect of g�s� on the total entropy is
more complex, depending upon the correlation of the fir-
ing across stimuli. g�s� can be chosen so as to increase
the total entropy (and thus the information, with the noise
entropy fixed), and this increase will be maximal for the
g�s� which lead exactly to G � 0. Neuronal or spike time
interaction may therefore eliminate or reduce the effect of
statistical dependencies introduced by other covariations.

The rate and correlation functions in practice must be
estimated from a limited number of experimental trials,
which leads to a bias in each of the entropy components.
This bias was corrected for, as described in [13]; how-
ever, the sampling advantage that will be described was
observed both with this correction, without bias correction,
and with other bias correction approaches such as that used
in [6].

To demonstrate its applicability, we applied the series
entropy analysis to data recorded from the primary visual
cortex (V1) of anesthetized macaque monkeys [14]. Fig-
ure 2 examines, for a typical V1 complex cell, the depen-
dence of the accuracy of the noise entropy estimate upon
the number of experimental trials utilized. It is the noise
entropy which is most affected by sampling constraints, so
we shall concentrate upon this quantity here. The top panel
shows the estimates before application of a bias removal
procedure, using the series (our technique) and brute force
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FIG. 2. Data-size dependence of noise entropy estimates for
a V1 complex cell. Time windows of 40 ms (half a stimulus
cycle) were broken into words of length 12 for the analysis. The
upper panel, (i), shows entropy estimates prior to correction for
bias, normalized by the asymptotic (true) entropy. The dotted
line indicates the “brute force” sampling characteristics for a
Poisson process with the same time-dependent firing rate. The
lower panel, (ii), shows the bias-corrected versions of these
estimates, and in addition the Ma lower bound upon the entropy.
The asymptotic entropy was obtained by extrapolating from the
curves; the results agree to within 1%. Error bars were obtained
by bootstrap resampling.
[simple application of Eq. (1)] approaches. The entropies
are expressed as a fraction of the asymptotic entropy ob-
tained by polynomial extrapolation [6]. Reliable extrapola-
tion to the asymptotic entropy was possible because of the
large amount of data that happened to be available for this
cell (which was chosen with that in mind; more usually
between 20 and 100 trials were available). This allowed
us to compare the performance of the methods on smaller
subsets of the data against a known reference. The fact
that series and brute-force estimators converged for this
cell indicates that higher order correlations among spike
times contributed little to the entropy.

The better performance of the series approach can be un-
derstood by considering that (at second order) it requires
sampling from only the first two moments of the probabil-
ity distribution, whereas the brute force approach depends
upon all moments. Higher moments have to be computed
from events with lower and lower probability, as shown
in Eq. (4); estimation of these lower probability events is
more error-prone, and leads to the larger bias of the brute
force approach.

Also shown in Fig. 2 is the Ma lower bound upon the
entropy [15], which has been proposed as a useful bound
which is relatively insensitive to sampling problems [6].
The Ma bound is tight only when the probability distri-
bution of words at fixed spike count is close to uniform.
It can be seen that for the V1 complex cell data, the Ma
bound is not tight at all. To understand the behavior of
the Ma bound for short time windows, we calculated se-
ries terms. The Ma entropy already differs from the true
entropy at first order:

THMa
t �

1
ln2

X
a

X
ta
1

�ra�ta
1 ; s�Dt�s

2
X
a;ta

1

�ra�ta
1 ; s�Dt�s log2

P
a;ta

1
�ra�ta

1 ; s��2
sDtP

a;ta
1
�ra�ta

1 ; s��s
.

(8)
This coincides with Eq. (5) only if there are no variations
of rate across time and cells. If there were higher frequency
rate variations, or more cells with different response pro-
files, the Ma bound would be still less useful.

Estimation quality depends upon not just sampling bias,
but also variance; these can be summarized by the rms
error of the entropy estimate. We investigated the be-
havior of the rms error by fitting a Poisson model with
matched time-dependent firing rate to the experimental
data of Fig. 1. This model, although yielding a 5% lower
noise entropy (because of correlations in the real data),
predicted the brute force sampling characteristics of Fig. 2
almost exactly. The model was used to generate a larger
set of data (10 000 trials, or 160 000 stimulus presentations
in total). This model yields worst-case sampling for the
brute force estimator; worst-case sampling for the series
estimator would be achieved by even spread of probabil-
ity throughout only the second order response space. The
simulation serves to compare the estimators in a statistical
regime similar to that of the typical cell of Fig. 2.
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FIG. 3. rms error scaling characteristics for word lengths from
4 to 12 in the simulation. The true noise entropies were 2.0, 3.5,
and 4.7 bits, respectively.

Figure 3 shows the scaling of the rms error before bias
correction with data size in this simulation. Scaling is
qualitatively similar (but with a sharper decrease) after cor-
rection. The scaling behavior resulting from the simulation
predicts that with a brute force approach, a rms error of 2%
of the entropy at a word length of 12 would require around
1400 trials with, and greater than 5000 trials without, ap-
plication of the finite sampling correction. The series esti-
mator reduces these requirements to approximately 50 and
400 trials respectively. These figures are dependent upon
data statistics, and should be checked on a case by case ba-
sis; however, the dimensionality reduction with the series
expansion provides a general improvement in the quality
of entropy estimates for short time windows.

Some readers may wonder whether this new method
amounts to computing the entropy with words with greater
than two spikes thrown out. This is not the case: the
proposed method considers pairwise interactions among
all spikes in the word, no matter how many there are.
It thus (unlike a truncated brute force approach) obtains
the ability to take into account almost all of the entropy
of longer words, while retaining the sampling benefits of
being a second order method.
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As neuroscience enters a quantitative phase, information
theoretic techniques are being found useful for the analy-
sis of data from physiological experiments. The methods
developed here may broaden the scope of the study of neu-
ronal information properties. In particular, they render fea-
sible the information theoretic analysis of some recordings
from anesthetized and awake mammalian cerebral cortices.
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