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Error Threshold for Spatially Resolved Evolution in the Quasispecies Model
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The error threshold for quasispecies in 1, 2, 3, and ` dimensions is investigated by stochastic simula-
tion and analytically. The results show a monotonic decrease in the maximal sustainable error probability
with decreasing diffusion coefficient, independently of the spatial dimension. It is thereby established
that physical interactions between sequences are necessary in order for spatial effects to enhance the
stabilization of biological information. The analytically tractable behavior in an `-dimensional (sim-
plex) space provides a good guide to the spatial dependence of the error threshold in lower dimensional
Euclidean space.
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The quasispecies theory provides a physically grounded
kinetic model for the evolution of biological information
[1]. For large, well-mixed, and noninteracting popula-
tions, it provides the first answer to the question as to how
much information can be maintained stably in a population
of erroneously self-replicating molecular sequences and
thereby also to the question how far simple physicochemi-
cal interactions can take matter towards complex biological
information. The sustainable length of specific sequence
information is limited by an error threshold which depends
primarily on the probability of errors during replication,
but also on differences in replication rates of the sequences
involved [2–4]. The error threshold can be computed as
a function of the statistical distribution of sequence de-
pendent replication rates [5], somewhat analogously to the
electron localization threshold phenomenon of disordered
solids [6]. Although there are some recent papers that
deal with the physical aspects of the quasispecies model
[7,8], it is curious that there appears to have been no de-
tailed investigation of the interplay between physical space
and evolution for that simple model. Most attention has
naturally focused instead on the key role of space in foster-
ing the stable coevolution of interacting sequences [9,10].
However, one would like to be able to compare the infor-
mation dynamics, in such more complex spatially resolved
systems with nonlinear kinetics, to the noninteracting qua-
sispecies model basal case.

In the deterministic homogeneous quasispecies model,
different heteropolymers composed of k types of
monomers with sequences i of length n and with concen-
trations xi can replicate and mutate as governed by the
differential equations

dxi

dt
�

X
j

Wijxj 2 Fxi , (1)

where the total concentration
P

i xi is held constant by
a compensating dilution flux with rate coefficient F.
Making the standard assumption of a uniform fidelity q of
copying each monomer in a sequence (leading to the whole
sequence fidelity Q � qn), the net production rate of
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sequence i from sequence j, Wij , depends on their ham-
ming distance d�i, j� (i.e., number of monomer substitu-
tions necessary to convert sequence i to sequence j);

Wij �

µ
q21 2 1
k 2 1

¥d�i,j�
AjQ 2 Djdij , (2)

with Aj and Dj denoting the rates of replication and
degradation, respectively. For i � j, Wij corresponds to
the net rate coefficient for accurate replication, AiQ 2

Di , and for i fi j, it corresponds to mutation. In the
homogeneous quasispecies model, there is a minimum fi-
delity Qc for which the steady state concentration of the
fastest replicating sequence is significantly greater than the
uniform background level xi � 1�kn .

The properties of the model depend on the mapping of
sequences to the rate coefficients Ai and Di appearing
in Eq. (2), called the fitness landscape. To expose the
main effects of space most clearly, attention is restricted
to conventionally the simplest nontrivial landscape (with
Di � 0�, consisting of a single peak at i � 0 (a particular
sequence called the wild type) with magnitude A0 � s

(called the “superiority parameter”) above a lower plane
of identical values Aifi0 � 1 (which can be chosen arbi-
trarily as it rescales the time only) [11]. In this Letter, the
approximation of neglecting the back mutation from the
pool of sequences to the master sequence is made as in
[2] and becomes valid for long sequences since the mean
probability for such a process is proportional to n21k2n .
The approximation allows the complex reactions which
follow from Eq. (1) to be simplified by lumping the se-
quence space into two parts with concentrations x � x0
and y �

P
ifi0 xi . With this definition, the deterministic

kinetics become

dx
dt

� sQx 2 Fx , (3)

dy
dt

� s�1 2 Q�x 1 y 2 Fy , (4)

which provides a good approximation to the critical er-
ror threshold as shown in [2]. Moreover, this simplified
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case will prove to be accessible to analytical treatment in
`-dimensional space.

In spatially resolved models, local fluctuations cannot
be neglected as is possible in the kinetic equations of the
quasispecies model. A discrete stochastic formulation is
adopted below as in [3], where the rate coefficients de-
termine transition probabilities (proportional to dt). The
deterministic quasispecies model involves a constant to-
tal concentration. Various stochastic models of constant
population size N have been employed [12] and lead to
similar results. Here, a Moran model was adopted, in
which individuals are lost by replacement with replica-
tion products, so that only fluctuations in composition are
considered, not in population size. This standard general
framework of stochastic reaction kinetics by the birth and
death master equations [13] is employed locally.

The overall population is divided into discrete local sub-
populations (sites with n individuals) on a lattice. The
spatial dimension d is then reflected in the connection
topology of neighboring sites. In addition to local reac-
tions, individuals may exchange position between adja-
cent sites stochastically. The rate of such exchanges is
described by the diffusion coefficient D. The simplex
topology, corresponding to `-dimensional space, where
every site is a neighbor of every other, will turn out to ad-
mit an exact analytical solution for small n. This topology
is equivalent to the island model of Wright [14], in which
migration takes place with equal probability between any
pair of islands.

Let k be the number of wild-type individuals on
a site, and k̄ their mean number in the system with
k̄ �

Pn
k�0 kPk�t�. Pk�t� gives the probability of there

being k wild types on a chosen site at time t. Stochas-
tically, the kinetics of the system are described by the
(birth and death) master equations for 0 # k # n (with
P21 � Pn11 � 0):

dPk

dt
� wk11!kPk11 1 wk21!kPk21

2 �wk!k21 1 wk!k11�Pk , (5)

setting Pk � Pk�t�. The transition probabilities for
increase and decrease of k, according to Eqs. (3) and
(4) are

wk!k11 � sQk
n 2 k
n 2 1

1 Dz
n 2 k

n
, (6)

wk!k21 � s�1 2 Q�k
k 2 1
n 2 1

1 �n 2 k�
k

n 2 1

1 D�n 2 z �
k
n

. (7)

The quantity z is the mean number of wild-type individuals
on all other sites, and for a sufficiently large number of
sites this is uncorrelated with k, i.e., z � k̄. For a finite
number of coupled sites, as in lower dimensional space,
this would require a mean field approximation. The origin
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of the other nondiffusive terms can be seen by comparing
with Eqs. (3) and (4). In the stationary state, dPk�dt � 0,
one obtains the recurrence relation

Pk � P0

k21Y
i�0

wi!i11

wi11!i
, (8)

where the probability of having zero wild-type sequences
in a site P0 is given by the normalization conditionPn

k�0 Pk � 1 and P0 � �1 1
Pn

k�1

Qk21
i�0

wi!i11

wi11!i
�21. By

setting ak �
wk11!k

wk!k11

Qk
i�0

wi!i11

wi11!i
, the self-consistency

equation z � k̄ �
Pn

k�0 kPk can be written as

z

nX
k�0

ak �
nX

k�0

kak , (9)

which defines Q�z � implicitly for arbitrary n since the
ak depend on Q. For n � 2, one obtains after some
manipulation Q�z � � s1D�11z �s21��2�

s�11D� , with exponen-
tially more complicated polynomial equations needing to
be solved for higher n. Near the error threshold, z is small,
allowing the critical error probability Rc � 1 2 Q�z !
0� to be calculated explicitly as a function of the diffusion
rate D:

Rc �
D�s 2 1�
s�1 1 D�

, (10)

which is the main result of the analytical calculation.
For the numerical results, a grid architecture with two

molecules per site (as for the n � 2 case) was used both
for simulations in the simplex case (d � `) and for the fi-
nite spatial dimensions d � 1, 2, 3 (which have not proven
tractable by analytical means). The simulations involve a
Monte Carlo simulation of the stochastic kinetics, with the
states of the system described by the local population num-
ber k [ �0, 1, 2� at each site. The transition probabilities
are defined as in Eqs. (6) and (7) at each time step; the
sum of the next reaction or molecule interchange between
sites is chosen with a weighting factor proportional to these
transition probabilities using a variant of the Gillespie al-
gorithm [15]. In contrast with the above analytical model,
in lower spatial dimensions the simulations potentially al-
low the buildup of local correlations between neighboring
sites beyond those implied by the mean population sizes.

Two values of the superiority parameter s (2 and 10)
were chosen to illustrate the main cases of relatively mild
and strong selection pressures. The critical error thresh-
old Rc in the simulation is simply defined by the high-
est error probability R � 1 2 Q, where the population of
the wild-type sequence survives. An overall population
size of N � 120 000 was used which was checked to be
sufficiently large for the results to be independent of N .
Moreover, the simulations were done on a time scale of
some 10 000 complete updates (generations) which assures
that the system is in the steady state. The results of the
simulations are shown in Fig. 1. In each dimensionality, a
monotonic dependence of the critical error probability Rc
on the diffusion rate D was obtained. In the case of low
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diffusion rate, the number of sites visited by an individual
on the time scale of replication (accessible sites) becomes
small, which implies a low effective population size. It is
known that the homogeneous error threshold value tends
to zero for small populations [3,4,16], and this is also true
for the spatial stochastic analysis and simulations here in
the limit of low diffusion. The result of the simulation for
the simplex case and of the analytical description are com-
pared in Fig. 2. One obtains excellent agreement even for
the situation of extremely low diffusion.

The basic properties of the model should be inde-
pendent of the chosen site size, n, once the space scale
induced by diffusion is larger than this size. For the
infinite-dimensional case, the scaling behavior for differ-
ent n can be deduced for moderate and high diffusion
rates, making use of the simple observation that a dif-
fusing molecule will never return to a former site, since
its number is infinite. Hence, a molecule visiting m sites
once, meets m�n 2 1� others. Two different site sizes
(n, n0) can be related by rescaling diffusion coefficients
(D to D0) so that the number of molecules encountered in
time t, nt � �1 1 Dt� �n 2 1�, is the same. One obtains

D0 �
n 2 1
n0 2 1

D 1
n 2 n0

n0 2 1
1�t 	

n 2 1
n0 2 1

D , (11)

for sufficiently large D. Comparing site sizes n with the
reference case n0 � 2, combining Eqs. (10) and (11),

Rc�n� 	
D�n 2 1� �s 2 1�
s�1 1 D�n 2 1��

. (12)

FIG. 1. Spatial dependence of critical error probability in qua-
sispecies model: The graph shows the simulation results for the
critical error probability R, sequence length n � 20, and superi-
ority s � 10 as a function of diffusion rate D for various spatial
dimensions d � 1 ���, d � 2 ���, d � 3 ���, and d � ` ���.
Observe that R is a monotonic function of D, independent of the
spatial dimension, and that the simplex case does indeed behave
as an `-dimensional limit. For high diffusion, one obtains the
results for the well-stirred case R 	 1 2 1�s.
The scaling behavior of Rc�n� for large and moderate D
(see Fig. 3) is well captured by Eq. (12) and reaches the
correct large population limit for all n as D ! `. As seen
in Fig. 1, the behavior is similar in lower dimensions.

The quasispecies model describes the limitations due to
errors in large well-mixed (haploid) populations [2] and
approximate expressions have been derived for the case of
finite populations [3,5]. Locally, finite population effects
play a vital role, so a continuous population approximation
in terms of partial differential equations has been avoided.
The infinite-dimensional limit strongly resembles the is-
land model first proposed by Wright [14]. This theory was
recently extended by some authors (e.g., [17–19]). In an-
other context, Kimura [20] studied approximations in sim-
plex topologies for the limit of large island populations.

In this Letter, an exact analytical description of the
stochastic behavior for the smallest site size n has been
achieved. An exact analytical treatment is still possible
for n � 3 and n � 4, and for higher n, the characteristic
polynomial of Eq. (9) can be solved numerically. How-
ever, it was also demonstrated that by scaling the diffusion
coefficient appropriately, the n � 2 case describes the
reduction in maximal sustainable error probability, Rc,
down to diffusion rates which isolates individuals on
single sites for time scales similar to that of replication.
The reduction of the critical error threshold with de-
creasing diffusion coefficient is similar to that induced
by finite populations. This connection between effective
population size and diffusion coefficient was also used to

FIG. 2. Critical error probability as a function of diffusion
coefficient for two different selection strengths: The graph
shows the result of the analytical calculation (solid lines) for the
`-dimensional case to be in good agreement with the results
of the numerical simulation for s � 10 ��� and s � 2 ���.
As the diffusion coefficient gets higher, the accessible space
for single molecules also becomes larger and, in the limit of
infinitely large diffusion, the error probability reaches the value
for the homogeneous quasispecies (marked as a horizontal
dashed line).
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FIG. 3. Population size dependence and scaling behavior of
the critical error probability for higher diffusion rates: The
graph shows the results of the analytical calculation (solid lines)
for n � 2, 3, 4 (from bottom to top) for s � 10 (upper half,
converging to 0.9) and s � 2 (lower half, converging to 0.5).
For the diffusion range shown, the scaling results of Eq. (12)
(dashed lines) from n � 2 to n � 3, and to n � 4 provide a
good approximation becoming exact in the high D limit.

derive the scaling approximation given by Eq. (12). In
the limit of zero diffusion, the two state assumption given
by Eqs. (3) and (4) with neglect of mutational backflow
from error copies makes P0 � 1 an absorbing state for
isolated sites. However, since the rate of mutational
backflow is small, proportional to n21k2n , this recreation
by mutation is much more seldom than repopulation by
diffusion for physically reasonable D (see also below), and
this explains why simulations with the full quasispecies
model including mutational backflow agreed qualitatively
well with the two state assumption for finite D.

What are the experimental conditions necessary for dif-
fusion limitation of the error threshold? In continuous
aqueous solutions in three-dimensional space, typical dif-
fusion times for informational macromolecules, such as
RNA with typical lengths of about 100 bases, are 2 3

10211 m2�s. On the time scale t of replication, several
seconds in in vitro experiments with RNA [21], a char-
acteristic length scale L �

p
Dt of 4 3 1025 m results.

A cube of this dimension has volume ca. 6 3 10211 liters,
so that very small concentrations, around 100 fM, are nec-
essary to sufficiently isolate individuals to see the spatial
effects on the error threshold. However, in gels or porous
media with microscopic chambers on the spatial scale of
1 mm and below, more readily detectable concentrations
up to nanomolar range may be employed. One of the main
5822
advantages of small local population sizes is that their use
allows cooperative interactions between sequences to be
selected for, as in cells. Achieving understanding in this
regime has been the prime motivation for this work.

For moderate values of the diffusion rate, in which in-
dividuals enter several sites on the time scale of selection,
we have shown that the results become independent of the
number of particles per site, when the diffusion constant
is rescaled to preserve the number of accessible individ-
uals in a given time. For high diffusion rates, where the
effects of spatial structure are limited, the error probability
reaches asymptotically the limit of the well-stirred case.
The conclusion is that the effect of spatial correlations or
compartmentation is universally negative on the amount of
information which can be generated by selection in simple
noninteracting Darwinian populations. In a forthcoming
paper we will show how this result is lifted in the case of
interacting populations of sequences.
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