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New Stopping Criteria for Segmenting DNA Sequences
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We propose a solution on the stopping criterion in segmenting inhomogeneous DNA sequences with
complex statistical patterns. This new stopping criterion is based on Bayesian information criterion in the
model selection framework. When this criterion is applied to telomere of S. cerevisiae and the complete
sequence of E. coli, borders of biologically meaningful units were identified, and a more reasonable
number of domains was obtained. We also introduce a measure called segmentation strength which can
be used to control the delineation of large domains. The relationship between the average domain size
and the threshold of segmentation strength is determined for several genome sequences.
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DNA sequences are usually not homogeneous. Regions
with high concentrations of G or C bases alternate with re-
gions which lack G or C [1]; stretches of sequences with an
abundance of CG dinucleotide (CpG island) interrupt regu-
lar sequences; coding regions distinguish themselves from
noncoding regions by the strong periodicity-of-three pat-
tern, etc. The alternation of long (e.g., . 300 kilobases)
G 1 C rich and G 1 C poor regions (also known as “iso-
chores” [1]) is shown to be related to chromosome bands,
gene density, and perhaps chromosomal structure [1].
The concepts of inhomogeneity and domains can also be
generalized recursively to different length scales, and such
domains-within-domains phenomena have indeed been
observed in DNA sequences [2,3]. These hierarchical
patterns are the cause of the fractional long-range corre-
lations and 1�f spectra observed in DNA sequences [4].
There have been discussions of the possible biological
meaning of this hierarchical pattern [5] and its connection
to other complex systems [6].

Computational methods used to identify homogeneous
regions are called segmentation procedures [2,7] which
are important for many DNA sequence analysis tasks: de-
tecting the existence of isochores, identifying complicated
repeat patterns within telomeres and centromeres, deter-
mining coding-noncoding borders [8], etc. Segmentation
procedures can also be applied to any inhomogeneous/
disorder media (e.g., one-dimensional solid, spin glass
chain) or nonstationary time series (e.g., symbolic dynam-
ics) to determine the domain borders or turning points. An
application of the segmentation procedure to determine the
mobility edge of vibrational states in disordered materials
can be found in [9]. The segmentation procedure and the
physical fragmentation [10] are highly reminiscent of each
other [11]. The ease of a segmentation procedure directly
affects the scaling exponent of the size distribution in a
fragmentation [11].

In the segmentation procedure proposed in [2], one
crucial step —the stopping criterion —is arbitrarily deter-
mined. This is because this criterion is presented within
the framework of hypothesis testing. It is common in this
framework to reject or accept the null hypothesis based on
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a chosen significance level, typically, 0.01 or 0.001. Not
choosing other levels, say, 0.025 or 1026, is to some ex-
tent arbitrary. Another practical problem of the criterion
in [2] is that it is extremely hard to halt the recursion at
a large length scale even with a very small significance
level, whereas many biologically interesting domains such
as isochores are large. We solve these problems here by
discussing segmentation in a new framework —the model
selection framework. As a result, an alternative meaning
of segmentation is proposed, and a minimum requirement
for choosing one model over another is introduced.

In the model selection framework, basic 1-to-2 segmen-
tation is carried out as a comparison of two stochastic
models of the DNA sequence: before the segmentation, the
sequence is modeled by a homogeneous random sequence
(with three base composition parameters); after the seg-
mentation, by two homogeneous random sequences sepa-
rated by a partition point (with seven parameters). Whether
a 1-to-2 segmentation should be continued or not is deter-
mined by whether the two-random-subsequence model is
better than the one-random-sequence model. In model se-
lection, the answer to this question is determined by two
factors: (i) the model’s ability to fit the data and (ii) the
model’s complexity. Overfitting and underfitting models
are not considered to be good, either because of high model
complexity or because of poor fitting performance. The
Bayesian information criterion (BIC) is a proposal for bal-
ancing the two factors, defined as [12]

BIC � 22 log�L̂� 1 log�N�K 1 O�1� 1 O

µ
1

p
N

∂
1 O

µ
1
N

∂

� 22 log�L̂� 1 log�N�K , (1)

where L̂ is the maximum likelihood [13], K is the number
of parameters in the model, and N is the number of data
points. BIC is an approximation of the logarithm of inte-
grated likelihood of a model multiplied by 22 [12]. The
integrated likelihood represents the overall performance
of a model. The better the model, the larger the inte-
grated likelihood, and thus the smaller the BIC. A similar
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concept is the Akaike information criterion (AIC) [14],
with the log�N� term in Eq. (1) replaced by 2. BIC pe-
nalizes complex models more severely than AIC.

We show here that the entropy-based segmentation
in [2] can be recast in the likelihood framework [13],
which in turn can be generalized to a model selection
framework [15]. The likelihoods of the random-sequence
model and the two-random-subsequence model (before
and after a 1-to-2 segmentation) are L1��pa�� �

Q
a pNa

a ,
L2��pl

a�, �pr
a�, Nl� �
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�pl
a�, �pr

a� (a � A, C, G, T ) are the base composi-
tion parameters for the whole sequence, left and right
subsequence, respectively; �Na�, �Nl

a�, �Nr
a� are the cor-

responding base counts; and Nl is the size of the left
subsequence. The maximum likelihood estimation of
the parameters is simply p̂a � Na�N , and the maxi-
mum log likelihoods before and after segmentation are
logL̂1 � 2NE and logL̂2 � 2NlEl 2 NrEr , where
E, El , Er are the entropies for the whole, left, and right se-
quences. The segmentation position Nl is also a parameter
in the model and is determined by the position that maxi-
mizes the likelihood (though this parameter is discrete and
its range changes with N). The increase of log-likelihood
is log�L̂2�L̂1� � NE 2 �NlEl 1 NrEr � � N ? D̂JS ,
where D̂JS is the maximum of Jensen-Shannon divergence
DJS � E 2 �NlEl 1 NrEr ��N [2,16].

We require that the BIC be reduced by the segmentation
for the procedure to continue, i.e., DBIC , 0, which leads
to (note K2 � 7 and K1 � 3):

2ND̂JS . 4 log�N� . (2)

Equation (2) is our new stopping criterion.
Lower (relaxed) bound of the significance level.—The

stopping criterion in Eq. (2) differs from the criterion in
[2] in that the significance level cannot be arbitrarily re-
laxed. The criterion in [2] compares the maximum DJS

with that of a random sequence. If the sequence is indeed
random, 2ND̂JS typically follows a x2 distribution, and
the tail area under this distribution is the corresponding
significance level [17]. Numerical simulation and studies
on the change-point problem in statistics have shown that
the distribution may not be a x2, but an N-dependent “ex-
treme value” distribution [18]. The dependence of Eq. (2)
on the sequence length N is consistent with these studies.
It also has important practical implications: the stopping
criterion in Eq. (2) is not fixed but adjustable. It is par-
ticularly important for a long sequence, when the criterion
in [2] may not be able to stop segmentations with large
2ND̂JS .

In Fig. 1, we illustrate the new criterion for the left
telomere of chromosome 12 of yeast Saccharomyces cere-
visiae [19]. It is known that telomere sequences are com-
positionally complex. There is a highly repetitive sequence
called TEL at the tip of the telomere (for yeast, it is
50-C123A-30). There are also subsequences that are con-
served among different yeast chromosomes: the Y 0 and
5816
FIG. 1. Partition points determined by the segmentation with
the stopping criterion Eq. (2) for the left telomere of yeast
S. cerevisiae chromosome 12 (dashed vertical lines). The parti-
tion points determined by AIC (dot) (with the high-order term in-
cluded), hypothesis testing framework with significance level of
0.05 (dot), 0.01 (cross), 0.001 and 0.0001 (solid dot) are shown
for comparison. Also shown is the G 1 C content in mov-
ing windows (window size � 150 bases; moving distance �
51 bases). The location of the telomeric sequence (TEL) and
subtelomeric sequences (Y 0 and X) are marked. The lower plot
shows the segmentation strength s of a 1-to-2 segmentation. The
numbers are the order in which the segmentation is carried out.

X subtelomeric sequence [20]. A segmentation procedure
can be applied to telomere sequences to identify some com-
positionally distinct elements [21]. It can be seen from
Fig. 1 that the criterion in Eq. (2) manages to delineate the
borders for TEL and X elements [22]. Although Eq. (2)
missed the two Y 0 elements, an indication that Y 0 elements
are not compositionally distinct, it is the cost of avoiding
many false positives.

Segmentation strength.—Although a lower (relaxed)
bound of the significance level is set in Eq. (2), no limit
on the upper (stringent) bound is possible. We introduce
a measure for segmentation strength s [15]:

s �
2ND̂JS 2 4 log�N�

4 log�N�
, (3)

and the stringency level can be raised by choosing a
nonzero value of the threshold s0: s . s0 . 0. Equa-
tion (2) is equivalent to s0 � 0. The prominence of TEL
and X elements is indicated by their large segmentation
strength (s � 1.7, 0.85, and 4.16; see the lower plot of
Fig. 1). These segmentations are also chosen earlier in
the recursive segmentation (being first, second, and third).

Minimum domain size.—To test a model on a data set,
the number of samples must be larger than the number of
parameters in the model. Since we compare two models
with three and seven parameters, respectively, the sequence
has to contain at least seven bases before the segmentation
and three bases after the segmentation. Unlike the crite-
rion in [2], these minimum size requirements are not set
arbitrarily.

Binary and 12-symbol sequences.—For many practical
applications of the segmentation procedures, DNA texts
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are converted to symbolic sequences with less (or more)
than four symbols. For example, the two-symbol sequence
with symbols S (for strong, G and C) and W (for weak,
A and T ), is frequently used for studying large-scale ho-
mogeneous domains. The stopping criteria for binary se-
quences can be modified easily: with K1 � 1 and K2 � 3,
the right-hand side of Eq. (2) becomes 2 log�N�. For cod-
ing region recognition, it is proposed in [8] that a DNA
sequence can be converted to a 12-symbol sequence: each
symbol contains information on both the base and the
codon position (i.e., A1, C1, G1, T1, A2, · · ·). With K1 �
9 and K2 � 19, the stopping criteria in Eq. (2) become
2ND̂JS . 10 log�N�.

Threshold for segmentation strength and domain
sizes.—Since Eq. (2) does not provide an upper (strin-
gent) limit on the significance level, there is still some
degree of subjectivity in our segmentation procedure. If
one is interested in largest domains, or the strongest seg-
mentation signals, the threshold for segmentation strength
s0 should be set larger than zero. Taking the complete
sequence of Escherichia coli genome [23], for example,
the replication origin and the replication terminus present
the two most significant segmentation signals (see Fig. 2).
If the s0 is set to 20, only these two 1-to-2 segmentations
will make the cut.

The larger the s0, the larger the domain sizes in the final
configuration. The relationship between the two is em-
pirically determined by segmentations on several genome
sequences, shown in Fig. 3. It can be seen that the rela-
tionship is not universal for all sequences: with the same
s0, sequences with high compositional complexity (e.g.,
MHC sequence) contain smaller domain sizes in the final
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FIG. 2. Segmentation points determined by Eq. (2) for E. coli
genome (dashed vertical lines). Also shown are the G 1 C
content in moving windows (window size � 9000 bases; mov-
ing distance � 3571 bases), and the segmentation strength s.
The replication origin (ORI), replication terminus (TER), and
the nine largest domains (D1, D2, . . .) are marked in the plot.
Each one of the subplots represents 1 megabase of the sequence
(total length is 4.639 megabases).
configuration than sequences with lower complexity (e.g.,
yeast). It can also be seen that in order to reach the av-
erage size of isochore (300 kilobases), s0 should be set as
large as 5.

Domain size distribution.—Another indirect evidence
that our new stopping criterion is more reasonable than the
one in [2] (with a typical significance level) can be seen by
examining the domain size distribution in the final configu-
ration. The 281 domains in the Escherichia coli genome
in Fig. 3 are ranked by size. These sizes are plotted against
the rank (Zipf’s plot) in Fig. 4. The Zipf’s plot for sizes
from rank 4 to rank 180 approximately exhibit a power law
1�r1.21 (Fig. 4). This is similar to the power-law behavior
in Zipf’s plot of many other natural and social phenomena
(known as Zipf’s law [24,25] when the scaling exponent
is close to 21).

When a more relaxed stopping criterion is used, there is
a lack of large domains. We illustrate this by a AIC-based
segmentation which is equivalent to the criterion in [2]
with the significance level of 0.091 578 (using x

2
df�4). The

Zipf’s plot for domains derived from the AIC-based seg-
mentation is not a power-law function. Even a forced curve
fitting by a power-law function leads to a slope merely
� 20.5. This indicates that the size distribution by crite-
rion Eq. (2) is more self-similar, more balanced between
the small and large domains than those by the AIC-based
segmentation.

In summary, this paper solves a problem encountered
in [2] that recursive segmentation is not easy to stop
even when a stringent significance level is used (the most
stringent significance level in the SEGMENT program [26]
is 1026). This solution allows us to investigate much
larger domains and longer-range hierarchical correlation
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FIG. 4. Size-rank plot (Zipf’s plot) of domains obtained by
segmentation with the stopping criterion in Eq. (2). Those ob-
tained by the AIC-based segmentation are also shown.

in DNA sequences. The framework from which our
solution is derived is also ideal for generalizations to other
more complicated situations. Determining the number of
domains in a DNA sequence, as any other descriptions of
the sequence, is relative— it is relative to the length scale
of interests, relative to the model used. By changing the
segmentation strength, we essentially change the level of
description of the sequence.
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