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Hiding Bits in Bell States
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We present a scheme for hiding bits in Bell states that is secure even when the sharers, Alice and Bob,
are allowed to carry out local quantum operations and classical communication. We prove that the infor-
mation that Alice and Bob can gain about a hidden bit is exponentially small in n, the number of qubits in
each share, and can be made arbitrarily small for hiding multiple bits. We indicate an alternative efficient
low-entanglement method for preparing the shared quantum states. We discuss how our scheme can be
implemented using present-day quantum optics.
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The protection of a secret by sharing it, that is, by ap-
portioning the secret data among two or more parties so
that the data only become intelligible as a consequence
of their cooperative action, is an important capability in
modern information processing. Here we give a method of
using particular quantum states to share a secret between
two parties (Alice and Bob), in which the data is hidden
in a fundamentally stronger way than is possible in any
classical scheme. We prove that, even if Alice and Bob
can communicate via a classical channel, they can only
obtain arbitrarily little information about the hidden data.
They can unlock the secret only by joint quantum measure-
ments, which require either a quantum channel, shared
quantum entanglement, or direct interaction between them.
We show that the creation of these secret shares can be
done with just a small expenditure of quantum entangle-
ment: no more than one Einstein-Podolsky-Rosen pair per
secret bit shared.

Our results are part of a larger exploration of the
information-theoretic capabilities of quantum mechanics,
notable examples of which (quantum key distribution [1]
and quantum teleportation [2]) have now begun to be
realized in the laboratory. The extent to which quantum
states can hide shared data can be viewed as a new
information-theoretic characterization of the quantum
nonlocality of these states. Other workers have previously
identified quantum secret sharing protocols [3,4], in which
participants (possibly more than two) receive shares of
either quantum or classical data. In this previous work,
however, there is no guarantee that the data remains
hidden if the parties choose to communicate classically. In
fact, recent analysis [5] has shown that, for a single hidden
bit, secrecy in the presence of classical communication is
impossible if the shares consist of parts of two orthogonal
pure quantum states. This stronger form of data hiding is
nonetheless possible, as we will show, but only when the
shares are made up of mixed quantum states.

Unlike the usual secret sharing schemes, the security in
our scheme does not depend on certain parties being hon-
est or malevolent; we assume that both Alice and Bob are
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malevolent in the sense that they would go to any length
to determine the hidden bit. The security of our scheme
relies on the fact that Alice and Bob are restricted in their
operations, a condition that could be enforced by a third
party. One can imagine, for example, a situation in which
the third party (the boss) has a piece of data on which she
would like Alice and Bob (some employees) to act with-
out the sensitive data being revealed to them, or, in another
scenario, the secret could be given to Alice and Bob and
be revealed to them at a later stage determined by the boss.
Our scheme is such that, at some later stage, the boss can
provide the employees with entanglement that enables the
parties to determine the secret with 100% certainty. This
last idea can in fact be used to establish a form of condition-
ally secure quantum bit commitment [6]. For these scenar-
ios to work, we have to assume that the boss controls the
(quantum) channel which connects the two parties: Alice
and Bob are not allowed to communicate via a quantum
channel. This prohibition can be enforced by the boss by
putting dephasing or noisy operations in their channel. Fur-
thermore, the boss controls the labs in which the employ-
ees operate; for example, she can, prior to operation, sweep
those labs clean of any entanglement (again by dephasing).

We present our protocol and prove its security for a
one-bit secret b; at the end we indicate the proof of the
security of its multibit extension. The protocol involves a
“hider” (the boss above) who prepares one of two orthogo-

nal bipartite quantum states r
�n�
b�0 or r

�n�
b�1 based on the

value of b, and presents the two parts of the state to Alice
and Bob. n is an integer which determines the degree of
security of the protocol. The hider is assumed to have a
supply of each of the four Bell states, defined as jF6� �
1p
2
�j00� 6 j11�� and jC6� � 1p

2
�j01� 6 j10��. jC2� is a

spin singlet while the other three are spin triplets. When
b � 1, the hider picks at random a set of n Bell states
with uniform probability, except that the number of singlets
must be odd. The b � 0 protocol is the same, except that
the number of singlets must be even. The hider distributes
the n Bell states to Alice and Bob; for each Bell state the
first qubit goes to Alice and the second to Bob.
© 2001 The American Physical Society 5807
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To prove the security of this protocol, we must con-
sider what information Alice and Bob can gather about
the bit b. We assume that Alice and Bob can perform any
sequence of local quantum operations supplemented by un-
limited two-way classical communication (we abbreviate
this class of operations as LOCC). This class of operations
does not permit measurements in the basis of Bell states,
from which the bit could easily be determined: Alice
and Bob simply count the number of singlets measured
and compute the parity. In fact, we will show that the in-
formation that Alice and Bob can learn about the hidden
bit is exponentially small in the number n of Bell states
that the hider uses for the encoding.

Before analyzing the security of our protocol, let us
pause and consider the possibility for realizing our scheme
in a physical experiment. The protocol that we have de-
scribed above can be implemented in a present-day quan-
tum optics lab in the following way. The hider needs to be
able to make any one of the four Bell states; with an op-
tical downconverter she can make a maximally entangled
state between two polarization modes 1p

2
�jl,$� 1 j$, l��

[7] and by further single-qubit operations she can map
this state onto any of the other three Bell states. The
photons can be sent through two optical fibers to the Alice
and Bob locations. Then Alice and Bob can attempt to
unlock the secret by LOCC (in Ref. [6] we describe an
optimal and simple LOCC procedure, involving only one-
qubit gates). For the complete unlocking of the secret, a
quantum channel between Alice and Bob is opened up and
Alice’s photons are sent to Bob. Finally, Bob will need
to do a measurement which distinguishes the singlet state
1p
2
�jl,$� 2 j$, l�� from the three other Bell states. Such

an incomplete measurement has been performed in the lab
[7]; a full Bell measurement is not necessary and is also
not technologically feasible in current experiments. Our
alternative low-entanglement preparation scheme will be
somewhat more involved in the lab but is interesting
nonetheless. As we will discuss, what is needed are
quantum operations in the Clifford group, including some
particular one-qubit gates obtainable by linear optics in
addition to the CNOT gate which cannot be implemented
perfectly by using linear optical elements. However,
recent work by Knill et al. [8] shows that a CNOT gate
can be implemented near-deterministically in linear optics
when single-photon sources are available.

Let us now pass to the security proof of our scheme.
The LOCC class, even though it plays a fundamental role
in the theory of quantum entanglement, is remarkably hard
to characterize succinctly [9]. However, our analysis will
rely on just one important feature that all LOCC operations
share: they cannot create quantum entanglement between
Alice and Bob if they are initially disentangled. We con-
sider a general measurement scheme for Alice and Bob
that, irrespective of its precise physical implementation,
leads to just two final outcomes, “0” or “1.” It can thus be
described as a POVM (positive operator valued measure)
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measurement [10], with two POVM elements, M0 $ 0 and
M1 $ 0, associated with outcomes 0 and 1, respectively.
In our case, M0,1 operates on a Hilbert space of dimension
22n, corresponding to the dimension of the input states.
For an input density matrix r, the outcome b occurs with
probability Tr�rMb�. Probability conservation implies that
M0 1 M1 � I , where I is the identity matrix.

A POVM measurement M for a bipartite input is de-
picted in Fig. 1(a). Such a POVM measurement imple-
mented by LOCC cannot create quantum entanglement.
This condition translates to two necessary conditions on
the measurement, �1 ≠ T � �Mb� $ 0 for b � 0, 1. Here, 1
is the identity operation on Alice’s system, T is the ma-
trix transposition on Bob’s system, T �ji� �jj� � jj� �ij, and
1 ≠ T is called the partial transpose operation. These
conditions are proved as follows: Suppose Alice and
Bob each prepares a maximally entangled state jCmax� �

1
p

2n

P2n21
i�0 ji� ji� in her/his own lab. They then apply the

measurement M, each on one register of jCmax�, as illus-
trated in Fig. 1(b). When outcome b is obtained, the resid-
ual state in the two unmeasured halves is proportional to

rf ~
X

i,j,m,n

ji, j� �m, njTr�Mbji, j� �m, nj�

�
X

l,j,m,n

�i, jjMT
b jm, n� ji, j� �m, nj � MT

b , (1)

where MT
b is the matrix transpose of Mb . Thus Fig. 1(b)

prescribes a LOCC procedure to create the states
MT

b �Tr�Mb�, since the input maximally entangled states
are prepared by Alice and Bob locally. Therefore, the
states MT

b �Tr�Mb� are necessarily disentangled and,
following the Peres criterion [11], they are positive under
partial transposition (PPT), meaning that �1 ≠ T � �MT

b � $

0, which in turns implies �1 ≠ T � �Mb� $ 0.

FIG. 1. (a) A bipartite POVM measurement M performed on
input r. The single horizontal lines are quantum registers, and
the double lines are classical registers. The box represents a
protocol (and circuit) for performing M. (b) A LOCC protocol
that prepares a state proportional to MT

b . The two registers of
the maximally entangled states jCmax� are represented by the
two lines connected in the far left. The output probabilities are
given by TrrMb with r � I�4n.
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We now use the constraints that M0,1 are PPT to bound
the probability of a successful measurement. In particu-
lar we consider the probability p0j0 that Alice and Bob
decide for outcome 0 when the hider has prepared r

�n�
0

(corresponding to the hidden bit b � 0), which is equal to
p0j0 � TrM0r

�n�
0 . Similarly we define p1j1 � TrM1r

�n�
1 ,

the probability of outcome 1 when r
�n�
1 is prepared by the

hider.
We show that it is not necessary to consider the most

general pair of PPT operators M0 and M1. If there exists
a general pair �M0, M1� obeying the PPT constraints, then
there is another PPT pair �M̃0, M̃1� which is diagonal in the
basis of n Bell states, such that the measurement with M̃0
and M̃1 has the same probabilities of success p0j0 and p1j1.
M̃0 and M̃1 are related to M0 and M1 by an action called
partial twirling [12] which removes all off-diagonal terms
in the Bell basis and leaves the diagonal terms unchanged.

The argument involves three observations. (i) Par-
tial twirling can be implemented by LOCC operations
[12] which preserve the PPT property [13]. Thus
�1 ≠ T � �M̃0,1� $ 0. (ii) The trace-preservation condition
M0 1 M1 � I is invariant under twirling, and therefore
M̃0 1 M̃1 � I . (iii) The states to be measured, r

�n�
0

and r
�n�
1 , are mixtures of tensor products of n Bell

states and thus are Bell diagonal. It follows that p0j0 �

TrM0r
�n�
0 � TrM̃0r

�n�
0 and likewise p1j1 � TrM̃1r

�n�
1 ,

because the off-diagonal terms of M0,1 do not contribute
to the trace. This establishes the argument; we can,
without loss of generality, restrict to a measurement with
Bell-diagonal POVM elements.

To carry the analysis further we introduce a compact no-
tation [12] that represents each of the four Bell states by
two bits, as follows: jF1� ! 00, jF2� ! 01, jC1� !
10, and the singlet jC2� ! 11. A product of n Bell
states is thus represented by a 2n-bit string s. The four
Bell states can be rotated into each other by local Pauli-
matrix rotations, involving one-half of the entangled state
only. In the language of binary strings, we can also asso-
ciate two bits with each of the Pauli matrices, sx ! 10,
sz ! 01, sy ! 11, and I ! 00. This notation is conve-
nient because the Pauli matrices then act on the two bits
characterizing the Bell state by a bitwise XOR (addition
modulo 2). For example, �sz ≠ I� jF1� � jF2� can be
represented as 01 © 00 � 01. Using the identity

�1 ≠ T � �jF1� �F1j� �
1
2 �jF1� �F1j 1 jF2� �F2j

1 jC1� �C1j 2 jC2� �C2j�
(2)

permits the operators �1 ≠ T �≠n�M0,1� to be written very
compactly in the binary-string notation. We denote the
diagonal matrix elements of M0 and M1 in the basis of
products of n Bell states (labeled by the 2n-bit string s)
by as and bs, respectively. Using the fact that strings of
Bell states can be converted to each other by local Pauli
operations, we can compute the diagonal matrix elements
of the equation �1 ≠ T �≠n�M0� $ 0 in the binary-string
notation. We obtain the condition

X

s
as©m�21�N11�s� $ 0 , (3)

for all 2n-bit strings m, where N11�s� is the number
of times that an 11 pair appears in the binary string s.
Through the association of Bell states with 2n-bit strings,
N11�s� is precisely the number of singlets jC2� among
the set of n Bell states. The same calculation for M1
gives

P
s bs©m�21�N11�s� $ 0 for all m. With the relation

as � 1 2 bs, resulting directly from M0 1 M1 � I , and
the identity

P
s�21�N11�s� � 2n (which can be shown by

evaluating a simple binomial sum), we obtain that, for all
2n-bit strings m

0 #
X

s
as©m�21�N11�s� # 2n. (4)

By setting m � 00, . . . , 00 in this equation, we can ex-
press the probabilities of success, p0j0 � 2��22n 1 2n� 3P

sjN11�s� is even as and p1j1 � 2��22n 2 2n� 3P
sjN11�s� is odd bs, in terms of these two inequalities.

This result bounds the sum p0j0 1 p1j1 2 1 in both ways

2d # p0j0 1 p1j1 2 1 # d , (5)

where d � 1�2n21. This result establishes the hiding
property: for d � 0 (corresponding to n ! `), Alice and
Bob’s measurement outcomes can be faithfully simulated
by a coin flip with bias p0j0, and so give no information
about the identity of the state. There is also an information-
theoretic interpretation of this result; we can show [6] that,
as a consequence of these inequalities, the mutual infor-
mation [14] I�B:M� is bounded by dH�B�, where B is the
bit value and M is the outcome of any LOCC measure-
ment by Alice and Bob, not just a two-outcome one. Here
H�B� [14] is the Shannon information of the hidden bit,
which equals one in the case of equal prior probabilities
for b � 0 and b � 1.

We now return to the question of how the hider can pro-
duce the states r

�n�
0 and r

�n�
1 using minimal entanglement

between the two shares. We will demand that the pro-
cedure to create r

�n�
0 and r

�n�
1 be efficient as a quantum

computation, that is, since each hiding state consists of 2n
qubits, we seek a procedure to create these states with little
entanglement, using a number of quantum computation
steps polynomial in n.

We use a convenient alternative representation of these
two density matrices:

r
�n�
0 � qnr

�n21�
1 ≠ r

�1�
1 1 �1 2 qn�r�n21�

0 ≠ r
�1�
0 ,

r
�n�
1 � pnr

�n21�
0 ≠ r

�1�
1 1 �1 2 pn�r�n21�

1 ≠ r
�1�
0 .

(6)
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The mixing coefficients are determined by the uniformity
of the Bell mixtures and proper normalization:

qn �
2n21 2 1
2�2n 1 1�

, pn �
2n21 1 1
2�2n 2 1�

. (6)

This representation can be easily understood by realizing
that in order to make, say, a mixture of n Bell states with an
even number of singlets, we can take a mixture of n 2 1
Bell states with an odd number of singlets and an additional
singlet or (with the appropriate probability) a mixture of
n 2 1 Bell states with an even number of singlets and
another Bell state which is not a singlet.

Solving the recurrence relations for these two den-
sity matrices, we find that r

�n�
0 and r

�n�
1 are both

so-called Werner density matrices [15]: linear com-
binations of the identity matrix I and the matrix
H � �1 ≠ T �≠n�jF1� �F1j≠n�. In particular, r

�n�
0 ~ I 1

2nH and r
�n�
1 ~ I 2 2nH. It is known from previous

work that the Werner state r
�n�
0 is disentangled [16]. In

fact, we can show [6] that it is possible to make r
�n�
0

by first choosing a random element U of the Clifford
group Cn [17] and then applying U ≠ U on the state
j0�≠n ≠ j0�≠n, i.e., the hider applies the same rotation U
on both n-qubit shares of the state. It can be shown that
this procedure takes O�n2� one-qubit and two-qubit gates
[17] and polynomial classical computation [6]. On the
other hand, the Werner state r

�n�
1 is entangled; its entan-

glement of formation is known to be one ebit [18]. Using
Eq. (6) for r

�n�
1 and the fact that r

�n�
0 is disentangled, we

show explicitly how the hider can recursively create r
�n�
1

using just one singlet: (i) The hider flips a coin with bias
pn for 0, and bias 1 2 pn for 1. (ii) If the outcome is
0, then the hider prepares a tensor product of r

�n21�
0 and

one singlet jC2� �C2j. This costs one ebit, since r
�n21�
0

is disentangled. If the outcome is 1, then she prepares
r

�n21�
1 ≠ r

�1�
0 . Here r

�1�
0 again requires no entanglement,

and r
�n21�
1 can similarly be prepared by the process just

described.
Finally, we note that the obvious extension of the pro-

tocol presented here permits the sharing of an arbitrary
number of bits. The hider simply encodes every bit in
a different block of Bell states as discussed above. The
security analysis is more involved, since it cannot be ex-
cluded that joint measurements on all tensor product com-
ponents provide more information than a measurement on
each component separately. By exploiting the symmetry
of the hiding states as expressed by their representation as
Werner states, we are able to bound the mutual informa-
tion I�B:M� � I�B1B2, . . . , Bk :M� # e, where M is now
5810
any multistate random variable obtained from a measure-
ment scheme on the k encoded bits, provided that n, the
number of Bell states in each block encoding Bi , scales
as n�k� ! 2k 1 logk 1 log loge 1 log1�e in the large
k limit. This result has been derived [6] for the case of
equal prior probabilities 1�2k for all k-bit strings.

In conclusion, we have shown how to share bits in a pair
of quantum states such that an Alice and a Bob who do
not share quantum entanglement and cannot communicate
quantum data can learn arbitrarily little information about
the bits, whereas Alice and Bob can obtain the bits reliably
if they are given these resources.
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